Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022302583> ?p ?o ?g. }
- W2022302583 endingPage "803" @default.
- W2022302583 startingPage "799" @default.
- W2022302583 abstract "In a large number of experiments it has been proven that plastic deformation of quasicrystals can occur by a dislocation mechanism. By the use of molecular dynamics simulations, we have investigated the application of shear stress to a three-dimensional model quasicrystal in which we had built an edge dislocation of the Peierls–Nabarro type. To determine suitable Burgers vectors we have calculated the gamma surface, i.e. the misfit energy obtained by a rigid shift of two sample halves along a glide plane. The sample was an approximant of the Ammann–Kramer–Penrose tiling decorated according to Henley and Elser (Phil. Mag. B 53 (1986) 59). It consisted of 1 504 080 atoms interacting via Lennard–Jones potentials. We performed simulations in the microcanonical ensemble at zero temperature. To detect the dislocation line we have used several visualization methods. We have plotted only particles with a potential energy above a threshold leading to pictures of both the atoms in the dislocation core and in the stacking fault in the wake of the dislocation. To distinguish among them we have used image processing algorithms. The displacement field of the configuration has also been computed. We have observed climb and glide motion of the dislocation. The climb motion is caused mainly by boundary effects due to the sample geometry. The glide motion shows kinks due to structural elements that act as pinning centers. The width of the kinks is about 20 quasilattice constants." @default.
- W2022302583 created "2016-06-24" @default.
- W2022302583 creator A5030305390 @default.
- W2022302583 creator A5038695779 @default.
- W2022302583 creator A5054313482 @default.
- W2022302583 creator A5077853399 @default.
- W2022302583 date "2000-12-01" @default.
- W2022302583 modified "2023-09-28" @default.
- W2022302583 title "Numerical simulation of dislocation motion in an icosahedral quasicrystal" @default.
- W2022302583 cites W1536486907 @default.
- W2022302583 cites W1559927180 @default.
- W2022302583 cites W1572130436 @default.
- W2022302583 cites W1590932878 @default.
- W2022302583 cites W1596416914 @default.
- W2022302583 cites W1596584641 @default.
- W2022302583 cites W1614777485 @default.
- W2022302583 cites W1971056531 @default.
- W2022302583 cites W1972252014 @default.
- W2022302583 cites W1973873107 @default.
- W2022302583 cites W1974775577 @default.
- W2022302583 cites W1975905515 @default.
- W2022302583 cites W1982764929 @default.
- W2022302583 cites W1991794210 @default.
- W2022302583 cites W1993750724 @default.
- W2022302583 cites W1994027924 @default.
- W2022302583 cites W1996132746 @default.
- W2022302583 cites W1998050904 @default.
- W2022302583 cites W1998287813 @default.
- W2022302583 cites W1999430315 @default.
- W2022302583 cites W2007959384 @default.
- W2022302583 cites W2011368825 @default.
- W2022302583 cites W2017196167 @default.
- W2022302583 cites W2018311301 @default.
- W2022302583 cites W2018763953 @default.
- W2022302583 cites W2022986607 @default.
- W2022302583 cites W2023701915 @default.
- W2022302583 cites W2027323801 @default.
- W2022302583 cites W2027551496 @default.
- W2022302583 cites W2028292004 @default.
- W2022302583 cites W2036777441 @default.
- W2022302583 cites W2040798093 @default.
- W2022302583 cites W2041638382 @default.
- W2022302583 cites W2041902442 @default.
- W2022302583 cites W2043683610 @default.
- W2022302583 cites W2047516837 @default.
- W2022302583 cites W2056405898 @default.
- W2022302583 cites W2057092066 @default.
- W2022302583 cites W2062465444 @default.
- W2022302583 cites W2066351024 @default.
- W2022302583 cites W2073213862 @default.
- W2022302583 cites W2076607474 @default.
- W2022302583 cites W2078415159 @default.
- W2022302583 cites W2079212115 @default.
- W2022302583 cites W2079436468 @default.
- W2022302583 cites W2079941823 @default.
- W2022302583 cites W2081724368 @default.
- W2022302583 cites W2083703591 @default.
- W2022302583 cites W2093019599 @default.
- W2022302583 cites W2097829453 @default.
- W2022302583 cites W2113391534 @default.
- W2022302583 cites W2123790489 @default.
- W2022302583 cites W2137447591 @default.
- W2022302583 cites W2152012831 @default.
- W2022302583 cites W2490682094 @default.
- W2022302583 cites W3005727287 @default.
- W2022302583 cites W3092590233 @default.
- W2022302583 cites W3116600147 @default.
- W2022302583 cites W623926844 @default.
- W2022302583 doi "https://doi.org/10.1016/s0921-5093(00)01074-1" @default.
- W2022302583 hasPublicationYear "2000" @default.
- W2022302583 type Work @default.
- W2022302583 sameAs 2022302583 @default.
- W2022302583 citedByCount "10" @default.
- W2022302583 crossrefType "journal-article" @default.
- W2022302583 hasAuthorship W2022302583A5030305390 @default.
- W2022302583 hasAuthorship W2022302583A5038695779 @default.
- W2022302583 hasAuthorship W2022302583A5054313482 @default.
- W2022302583 hasAuthorship W2022302583A5077853399 @default.
- W2022302583 hasConcept C107551265 @default.
- W2022302583 hasConcept C113709186 @default.
- W2022302583 hasConcept C121332964 @default.
- W2022302583 hasConcept C157384629 @default.
- W2022302583 hasConcept C15744967 @default.
- W2022302583 hasConcept C159122135 @default.
- W2022302583 hasConcept C192562407 @default.
- W2022302583 hasConcept C203101518 @default.
- W2022302583 hasConcept C206744179 @default.
- W2022302583 hasConcept C22372946 @default.
- W2022302583 hasConcept C2524010 @default.
- W2022302583 hasConcept C26873012 @default.
- W2022302583 hasConcept C2778168010 @default.
- W2022302583 hasConcept C2778536302 @default.
- W2022302583 hasConcept C2780583931 @default.
- W2022302583 hasConcept C33923547 @default.
- W2022302583 hasConcept C542102704 @default.
- W2022302583 hasConcept C59593255 @default.
- W2022302583 hasConcept C62520636 @default.
- W2022302583 hasConcept C81764414 @default.