Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022306762> ?p ?o ?g. }
- W2022306762 endingPage "4249" @default.
- W2022306762 startingPage "4240" @default.
- W2022306762 abstract "The metabolic syndrome is a set of risk factors that include abdominal obesity, insulin resistance, dyslipidemia and hypertension. It has affected around 25% of adults in the US and become a serious problem in Asian countries recently due to the change in dietary habit and life style. On the other hand, Bayesian networks that are the models to solve the problems of uncertainty provide a robust and transparent formalism for probabilistic modeling, so they have been used as a method for diagnostic or prognostic model in medical domain. Since the K2 algorithm, a well-known algorithm for Bayesian networks structure learning, is influenced by an input order of the attributes, an optimization of BN attribute ordering has been studied as a research issue. This paper proposes a novel ordering optimization method using a genetic algorithm based on medical expert knowledge in order to solve this problem. For experiments, we use the dataset examined twice in 1993 and 1995 in Yonchon County of Korea. It has 18 attributes of 1193 subjects participated in both surveys. Using this dataset, we make the prognostic model of the metabolic syndrome using Bayesian networks with an optimized ordering by evolutionary approach. Through an ordering optimization, the prognostic model of higher performance is constructed, and the optimized Bayesian network model by the proposed method outperforms the conventional BN model as well as neural networks and k-nearest neighbors. Finally, we present the application program using the prognostic model of the metabolic syndrome in order to show the usefulness of the proposed method." @default.
- W2022306762 created "2016-06-24" @default.
- W2022306762 creator A5005957507 @default.
- W2022306762 creator A5044514062 @default.
- W2022306762 date "2012-03-01" @default.
- W2022306762 modified "2023-09-26" @default.
- W2022306762 title "Evolutionary attribute ordering in Bayesian networks for predicting the metabolic syndrome" @default.
- W2022306762 cites W1509231914 @default.
- W2022306762 cites W1600028385 @default.
- W2022306762 cites W1965050321 @default.
- W2022306762 cites W1970252090 @default.
- W2022306762 cites W1973683489 @default.
- W2022306762 cites W1975878629 @default.
- W2022306762 cites W1988121399 @default.
- W2022306762 cites W1995779864 @default.
- W2022306762 cites W2003179529 @default.
- W2022306762 cites W2003562285 @default.
- W2022306762 cites W2003792585 @default.
- W2022306762 cites W2025873234 @default.
- W2022306762 cites W2035707537 @default.
- W2022306762 cites W2039499002 @default.
- W2022306762 cites W2041389007 @default.
- W2022306762 cites W2042379175 @default.
- W2022306762 cites W2049836554 @default.
- W2022306762 cites W2064299963 @default.
- W2022306762 cites W2077785980 @default.
- W2022306762 cites W2078481128 @default.
- W2022306762 cites W2078693936 @default.
- W2022306762 cites W2099769692 @default.
- W2022306762 cites W2105060685 @default.
- W2022306762 cites W2114651979 @default.
- W2022306762 cites W2137779110 @default.
- W2022306762 cites W2152538090 @default.
- W2022306762 cites W2161632986 @default.
- W2022306762 cites W2307253082 @default.
- W2022306762 cites W4236354166 @default.
- W2022306762 cites W4241373451 @default.
- W2022306762 doi "https://doi.org/10.1016/j.eswa.2011.09.110" @default.
- W2022306762 hasPublicationYear "2012" @default.
- W2022306762 type Work @default.
- W2022306762 sameAs 2022306762 @default.
- W2022306762 citedByCount "24" @default.
- W2022306762 countsByYear W20223067622012 @default.
- W2022306762 countsByYear W20223067622013 @default.
- W2022306762 countsByYear W20223067622014 @default.
- W2022306762 countsByYear W20223067622015 @default.
- W2022306762 countsByYear W20223067622016 @default.
- W2022306762 countsByYear W20223067622018 @default.
- W2022306762 countsByYear W20223067622019 @default.
- W2022306762 countsByYear W20223067622020 @default.
- W2022306762 countsByYear W20223067622021 @default.
- W2022306762 countsByYear W20223067622022 @default.
- W2022306762 countsByYear W20223067622023 @default.
- W2022306762 crossrefType "journal-article" @default.
- W2022306762 hasAuthorship W2022306762A5005957507 @default.
- W2022306762 hasAuthorship W2022306762A5044514062 @default.
- W2022306762 hasConcept C107673813 @default.
- W2022306762 hasConcept C119857082 @default.
- W2022306762 hasConcept C124101348 @default.
- W2022306762 hasConcept C126322002 @default.
- W2022306762 hasConcept C154945302 @default.
- W2022306762 hasConcept C159149176 @default.
- W2022306762 hasConcept C2780578515 @default.
- W2022306762 hasConcept C33724603 @default.
- W2022306762 hasConcept C41008148 @default.
- W2022306762 hasConcept C49937458 @default.
- W2022306762 hasConcept C50644808 @default.
- W2022306762 hasConcept C511355011 @default.
- W2022306762 hasConcept C71924100 @default.
- W2022306762 hasConceptScore W2022306762C107673813 @default.
- W2022306762 hasConceptScore W2022306762C119857082 @default.
- W2022306762 hasConceptScore W2022306762C124101348 @default.
- W2022306762 hasConceptScore W2022306762C126322002 @default.
- W2022306762 hasConceptScore W2022306762C154945302 @default.
- W2022306762 hasConceptScore W2022306762C159149176 @default.
- W2022306762 hasConceptScore W2022306762C2780578515 @default.
- W2022306762 hasConceptScore W2022306762C33724603 @default.
- W2022306762 hasConceptScore W2022306762C41008148 @default.
- W2022306762 hasConceptScore W2022306762C49937458 @default.
- W2022306762 hasConceptScore W2022306762C50644808 @default.
- W2022306762 hasConceptScore W2022306762C511355011 @default.
- W2022306762 hasConceptScore W2022306762C71924100 @default.
- W2022306762 hasFunder F4320322120 @default.
- W2022306762 hasFunder F4320322349 @default.
- W2022306762 hasIssue "4" @default.
- W2022306762 hasLocation W20223067621 @default.
- W2022306762 hasOpenAccess W2022306762 @default.
- W2022306762 hasPrimaryLocation W20223067621 @default.
- W2022306762 hasRelatedWork W1564300203 @default.
- W2022306762 hasRelatedWork W2069572447 @default.
- W2022306762 hasRelatedWork W2589495114 @default.
- W2022306762 hasRelatedWork W2902946190 @default.
- W2022306762 hasRelatedWork W3154094704 @default.
- W2022306762 hasRelatedWork W3204552159 @default.
- W2022306762 hasRelatedWork W4223456145 @default.
- W2022306762 hasRelatedWork W4229568052 @default.
- W2022306762 hasRelatedWork W99078755 @default.
- W2022306762 hasRelatedWork W1629725936 @default.