Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022307355> ?p ?o ?g. }
- W2022307355 endingPage "759" @default.
- W2022307355 startingPage "744" @default.
- W2022307355 abstract "There is increasing interest in the joint analysis of multiple phenotypes in genome-wide association studies (GWASs), especially for the analysis of multiple secondary phenotypes in case-control studies and in detecting pleiotropic effects. Multiple phenotypes often measure the same underlying trait. By taking advantage of similarity across phenotypes, one could potentially gain statistical power in association analysis. Because continuous phenotypes are likely to be measured on different scales, we propose a scaled marginal model for testing and estimating the common effect of single-nucleotide polymorphism (SNP) on multiple secondary phenotypes in case-control studies. This approach improves power in comparison to individual phenotype analysis and traditional multivariate analysis when phenotypes are positively correlated and measure an underlying trait in the same direction (after transformation) by borrowing strength across outcomes with a one degree of freedom (1-DF) test and jointly estimating outcome-specific scales along with the SNP and covariate effects. To account for case-control ascertainment bias for the analysis of multiple secondary phenotypes, we propose weighted estimating equations for fitting scaled marginal models. This weighted estimating equation approach is robust to departures from normality of continuous multiple phenotypes and the misspecification of within-individual correlation among multiple phenotypes. Statistical power improves when the within-individual correlation is correctly specified. We perform simulation studies to show the proposed 1-DF common effect test outperforms several alternative methods. We apply the proposed method to investigate SNP associations with smoking behavior measured with multiple secondary smoking phenotypes in a lung cancer case-control GWAS and identify several SNPs of biological interest. There is increasing interest in the joint analysis of multiple phenotypes in genome-wide association studies (GWASs), especially for the analysis of multiple secondary phenotypes in case-control studies and in detecting pleiotropic effects. Multiple phenotypes often measure the same underlying trait. By taking advantage of similarity across phenotypes, one could potentially gain statistical power in association analysis. Because continuous phenotypes are likely to be measured on different scales, we propose a scaled marginal model for testing and estimating the common effect of single-nucleotide polymorphism (SNP) on multiple secondary phenotypes in case-control studies. This approach improves power in comparison to individual phenotype analysis and traditional multivariate analysis when phenotypes are positively correlated and measure an underlying trait in the same direction (after transformation) by borrowing strength across outcomes with a one degree of freedom (1-DF) test and jointly estimating outcome-specific scales along with the SNP and covariate effects. To account for case-control ascertainment bias for the analysis of multiple secondary phenotypes, we propose weighted estimating equations for fitting scaled marginal models. This weighted estimating equation approach is robust to departures from normality of continuous multiple phenotypes and the misspecification of within-individual correlation among multiple phenotypes. Statistical power improves when the within-individual correlation is correctly specified. We perform simulation studies to show the proposed 1-DF common effect test outperforms several alternative methods. We apply the proposed method to investigate SNP associations with smoking behavior measured with multiple secondary smoking phenotypes in a lung cancer case-control GWAS and identify several SNPs of biological interest." @default.
- W2022307355 created "2016-06-24" @default.
- W2022307355 creator A5020872397 @default.
- W2022307355 creator A5030660111 @default.
- W2022307355 creator A5058965019 @default.
- W2022307355 creator A5081350789 @default.
- W2022307355 date "2013-05-01" @default.
- W2022307355 modified "2023-10-14" @default.
- W2022307355 title "Genome-wide Association Analysis for Multiple Continuous Secondary Phenotypes" @default.
- W2022307355 cites W1972020976 @default.
- W2022307355 cites W1980991473 @default.
- W2022307355 cites W2006423274 @default.
- W2022307355 cites W2026049415 @default.
- W2022307355 cites W2047200356 @default.
- W2022307355 cites W2053086663 @default.
- W2022307355 cites W2057933447 @default.
- W2022307355 cites W2082122713 @default.
- W2022307355 cites W2103465143 @default.
- W2022307355 cites W2108344795 @default.
- W2022307355 cites W2110846909 @default.
- W2022307355 cites W2118320202 @default.
- W2022307355 cites W2120240963 @default.
- W2022307355 cites W2122791877 @default.
- W2022307355 cites W2129150286 @default.
- W2022307355 cites W2130947914 @default.
- W2022307355 cites W2132617827 @default.
- W2022307355 cites W2134072500 @default.
- W2022307355 cites W2136326352 @default.
- W2022307355 cites W2137576793 @default.
- W2022307355 cites W2144947515 @default.
- W2022307355 cites W2149860264 @default.
- W2022307355 cites W2156595908 @default.
- W2022307355 cites W2157752701 @default.
- W2022307355 cites W2161998322 @default.
- W2022307355 cites W2166774283 @default.
- W2022307355 cites W222735011 @default.
- W2022307355 doi "https://doi.org/10.1016/j.ajhg.2013.04.004" @default.
- W2022307355 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3644646" @default.
- W2022307355 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23643383" @default.
- W2022307355 hasPublicationYear "2013" @default.
- W2022307355 type Work @default.
- W2022307355 sameAs 2022307355 @default.
- W2022307355 citedByCount "81" @default.
- W2022307355 countsByYear W20223073552013 @default.
- W2022307355 countsByYear W20223073552014 @default.
- W2022307355 countsByYear W20223073552015 @default.
- W2022307355 countsByYear W20223073552016 @default.
- W2022307355 countsByYear W20223073552017 @default.
- W2022307355 countsByYear W20223073552018 @default.
- W2022307355 countsByYear W20223073552019 @default.
- W2022307355 countsByYear W20223073552020 @default.
- W2022307355 countsByYear W20223073552021 @default.
- W2022307355 countsByYear W20223073552022 @default.
- W2022307355 countsByYear W20223073552023 @default.
- W2022307355 crossrefType "journal-article" @default.
- W2022307355 hasAuthorship W2022307355A5020872397 @default.
- W2022307355 hasAuthorship W2022307355A5030660111 @default.
- W2022307355 hasAuthorship W2022307355A5058965019 @default.
- W2022307355 hasAuthorship W2022307355A5081350789 @default.
- W2022307355 hasBestOaLocation W20223073551 @default.
- W2022307355 hasConcept C104317684 @default.
- W2022307355 hasConcept C105795698 @default.
- W2022307355 hasConcept C106208931 @default.
- W2022307355 hasConcept C106934330 @default.
- W2022307355 hasConcept C117220453 @default.
- W2022307355 hasConcept C119043178 @default.
- W2022307355 hasConcept C127716648 @default.
- W2022307355 hasConcept C135763542 @default.
- W2022307355 hasConcept C139275648 @default.
- W2022307355 hasConcept C153209595 @default.
- W2022307355 hasConcept C186413461 @default.
- W2022307355 hasConcept C199360897 @default.
- W2022307355 hasConcept C2524010 @default.
- W2022307355 hasConcept C33923547 @default.
- W2022307355 hasConcept C40696583 @default.
- W2022307355 hasConcept C41008148 @default.
- W2022307355 hasConcept C54355233 @default.
- W2022307355 hasConcept C70721500 @default.
- W2022307355 hasConcept C86803240 @default.
- W2022307355 hasConcept C96608239 @default.
- W2022307355 hasConceptScore W2022307355C104317684 @default.
- W2022307355 hasConceptScore W2022307355C105795698 @default.
- W2022307355 hasConceptScore W2022307355C106208931 @default.
- W2022307355 hasConceptScore W2022307355C106934330 @default.
- W2022307355 hasConceptScore W2022307355C117220453 @default.
- W2022307355 hasConceptScore W2022307355C119043178 @default.
- W2022307355 hasConceptScore W2022307355C127716648 @default.
- W2022307355 hasConceptScore W2022307355C135763542 @default.
- W2022307355 hasConceptScore W2022307355C139275648 @default.
- W2022307355 hasConceptScore W2022307355C153209595 @default.
- W2022307355 hasConceptScore W2022307355C186413461 @default.
- W2022307355 hasConceptScore W2022307355C199360897 @default.
- W2022307355 hasConceptScore W2022307355C2524010 @default.
- W2022307355 hasConceptScore W2022307355C33923547 @default.
- W2022307355 hasConceptScore W2022307355C40696583 @default.
- W2022307355 hasConceptScore W2022307355C41008148 @default.
- W2022307355 hasConceptScore W2022307355C54355233 @default.
- W2022307355 hasConceptScore W2022307355C70721500 @default.