Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022308778> ?p ?o ?g. }
- W2022308778 abstract "The Voronoi cell volume distributions for hard-disk and hard-sphere fluids have been studied. The distribution of the Voronoi free volume vf, which is the difference between the actual cell volume and the minimal cell volume at close packing, is well described by a two-parameter (2gamma) or a three-parameter (3gamma) gamma distribution. The free parameter m in both the 2gamma and 3gamma models is identified as the regularity factor. The regularity factor is the ratio of the square of the mean and the variance of the free volume distribution, and it increases as the cell volume distribution becomes narrower. For the thermodynamic structures, the regularity factor increases with increasing density and it increases sharply across the freezing transition, in response to the onset of order. The regularity factor also distinguishes between the dense thermodynamic structures and the dense random or quenched structures. The maximum information entropy (max-ent) formalism, when applied to the gamma distributions, shows that structures of maximum information entropy have an exponential distribution of vf. Simulations carried out using a swelling algorithm indicate that the dense random-packed states approach the distribution predicted by the max-ent formalism, though the limiting case could not be realized in simulations due to the structural inhomogeneities introduced by the dense random-packing algorithm. Using the gamma representations of the cell volume distribution, we check the numerical validity of the Cohen-Grest expression [M. H. Cohen and G. S. Grest, Phys. Rev. B 20, 1077 (1979)] for the cellular (free volume) entropy, which is a part of the configurational entropy. The expression is exact for the hard-rod system, and a correction factor equal to the dimension of the system, D, is found necessary for the hard-disk and hard-sphere systems. Thus, for the hard-disk and hard-sphere systems, the present analysis establishes a relationship between the precisely defined Voronoi free volume (information) entropy and the thermodynamic entropy. This analysis also shows that the max-ent formalism, when applied to the free volume entropy, predicts an exponential distribution which is approached by disordered states generated by a swelling algorithm in the dense random-packing limit." @default.
- W2022308778 created "2016-06-24" @default.
- W2022308778 creator A5007118355 @default.
- W2022308778 creator A5040381680 @default.
- W2022308778 date "2005-09-15" @default.
- W2022308778 modified "2023-10-14" @default.
- W2022308778 title "Voronoi cell volume distribution and configurational entropy of hard-spheres" @default.
- W2022308778 cites W1967005434 @default.
- W2022308778 cites W1970939309 @default.
- W2022308778 cites W1972802917 @default.
- W2022308778 cites W1973545306 @default.
- W2022308778 cites W1974679461 @default.
- W2022308778 cites W1979264415 @default.
- W2022308778 cites W1980464260 @default.
- W2022308778 cites W1980672375 @default.
- W2022308778 cites W1983003543 @default.
- W2022308778 cites W1988153140 @default.
- W2022308778 cites W1988447215 @default.
- W2022308778 cites W1995875735 @default.
- W2022308778 cites W2007487406 @default.
- W2022308778 cites W2015559654 @default.
- W2022308778 cites W2016610092 @default.
- W2022308778 cites W2017678259 @default.
- W2022308778 cites W2017889218 @default.
- W2022308778 cites W2018249864 @default.
- W2022308778 cites W2019364943 @default.
- W2022308778 cites W2022755414 @default.
- W2022308778 cites W2024378728 @default.
- W2022308778 cites W2032558547 @default.
- W2022308778 cites W2033330070 @default.
- W2022308778 cites W2039951900 @default.
- W2022308778 cites W2040631319 @default.
- W2022308778 cites W2045020176 @default.
- W2022308778 cites W2051486574 @default.
- W2022308778 cites W2052270725 @default.
- W2022308778 cites W2053047297 @default.
- W2022308778 cites W2053963016 @default.
- W2022308778 cites W2054579706 @default.
- W2022308778 cites W2057851104 @default.
- W2022308778 cites W2063658331 @default.
- W2022308778 cites W2064071467 @default.
- W2022308778 cites W2064120607 @default.
- W2022308778 cites W2073165420 @default.
- W2022308778 cites W2074042625 @default.
- W2022308778 cites W2079206242 @default.
- W2022308778 cites W2082911311 @default.
- W2022308778 cites W2158390541 @default.
- W2022308778 cites W2315338838 @default.
- W2022308778 cites W314524984 @default.
- W2022308778 cites W4254694495 @default.
- W2022308778 doi "https://doi.org/10.1063/1.2011390" @default.
- W2022308778 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16392567" @default.
- W2022308778 hasPublicationYear "2005" @default.
- W2022308778 type Work @default.
- W2022308778 sameAs 2022308778 @default.
- W2022308778 citedByCount "80" @default.
- W2022308778 countsByYear W20223087782012 @default.
- W2022308778 countsByYear W20223087782013 @default.
- W2022308778 countsByYear W20223087782014 @default.
- W2022308778 countsByYear W20223087782015 @default.
- W2022308778 countsByYear W20223087782016 @default.
- W2022308778 countsByYear W20223087782017 @default.
- W2022308778 countsByYear W20223087782018 @default.
- W2022308778 countsByYear W20223087782019 @default.
- W2022308778 countsByYear W20223087782020 @default.
- W2022308778 countsByYear W20223087782021 @default.
- W2022308778 countsByYear W20223087782022 @default.
- W2022308778 countsByYear W20223087782023 @default.
- W2022308778 crossrefType "journal-article" @default.
- W2022308778 hasAuthorship W2022308778A5007118355 @default.
- W2022308778 hasAuthorship W2022308778A5040381680 @default.
- W2022308778 hasConcept C105795698 @default.
- W2022308778 hasConcept C106301342 @default.
- W2022308778 hasConcept C121332964 @default.
- W2022308778 hasConcept C121864883 @default.
- W2022308778 hasConcept C124589349 @default.
- W2022308778 hasConcept C1276947 @default.
- W2022308778 hasConcept C149717495 @default.
- W2022308778 hasConcept C16309883 @default.
- W2022308778 hasConcept C20556612 @default.
- W2022308778 hasConcept C24881265 @default.
- W2022308778 hasConcept C2524010 @default.
- W2022308778 hasConcept C33923547 @default.
- W2022308778 hasConcept C46141821 @default.
- W2022308778 hasConcept C521977710 @default.
- W2022308778 hasConcept C72422203 @default.
- W2022308778 hasConcept C9679016 @default.
- W2022308778 hasConcept C97355855 @default.
- W2022308778 hasConcept C99987037 @default.
- W2022308778 hasConceptScore W2022308778C105795698 @default.
- W2022308778 hasConceptScore W2022308778C106301342 @default.
- W2022308778 hasConceptScore W2022308778C121332964 @default.
- W2022308778 hasConceptScore W2022308778C121864883 @default.
- W2022308778 hasConceptScore W2022308778C124589349 @default.
- W2022308778 hasConceptScore W2022308778C1276947 @default.
- W2022308778 hasConceptScore W2022308778C149717495 @default.
- W2022308778 hasConceptScore W2022308778C16309883 @default.
- W2022308778 hasConceptScore W2022308778C20556612 @default.
- W2022308778 hasConceptScore W2022308778C24881265 @default.
- W2022308778 hasConceptScore W2022308778C2524010 @default.