Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022321402> ?p ?o ?g. }
- W2022321402 endingPage "10934" @default.
- W2022321402 startingPage "10924" @default.
- W2022321402 abstract "Abstract A visible‐light‐excitable, ratiometric, brightly fluorescent pH indicator for measurements in the pH range 5–7 has been designed and synthesized by conjugatively linking the BODIPY fluorophore at the 3‐position to the pH‐sensitive ligand imidazole through an ethenyl bridge. The probe is available as cell membrane permeable methyl ester 8‐(4‐carbomethoxyphenyl)‐4,4‐difluoro‐3‐[2‐(1 H‐ imidazol‐4‐yl)ethenyl]‐1,5,7‐trimethyl‐3 a ,4 a ‐diaza‐4‐bora‐ s ‐indacene ( I ) and corresponding water‐soluble sodium carboxylate, sodium 8‐(4‐carboxylatophenyl)‐4,4‐difluoro‐3‐[2‐(1 H‐ imidazol‐4‐yl)ethenyl]‐1,5,7‐trimethyl‐3 a ,4 a ‐diaza‐4‐bora‐ s ‐indacene ( II ). The fluorescence quantum yield Φ f of ester I is very high (0.8–1.0) in the organic solvents tested. The fluorescence lifetime (ca. 4 ns) of I in organic solvents with varying polarity/polarizability (from cyclohexane to acetonitrile) is independent of the solvent with a fluorescence rate constant k f of 2.4×10 8 s −1 . Probe I is readily loaded in the cytosol of live cells, where its high fluorescence intensity remains nearly constant over an extended time period. Water‐soluble indicator II exhibits two acid–base equilibria in aqueous solution, characterized by p K a values of 6.0 and 12.6. The Φ f value of II in aqueous solution is high: 0.6 for the cationic and anionic forms of the imidazole ligand, and 0.8 for neutral imidazole. On protonation–deprotonation in the near‐neutral pH range, UV/Vis absorption and fluorescence spectral shifts along with isosbestic and pseudo‐isoemissive points are observed. This dual‐excitation and dual‐emission pH indicator emits intense green‐yellow fluorescence at lower pH and intense orange fluorescence at higher pH. The influence of ionic strength and buffer concentration on the absorbance and steady‐state fluorescence of II has also been investigated. The apparent p K a of the near‐neutral acid–base equilibrium determined by spectrophotometric and fluorometric titration is nearly independent of the added buffer and salt concentration. In aqueous solution in the absence of buffer and in the pH range 5.20–7.45, dual exponential fluorescence decays are obtained with decay time τ 1 =4.3 ns for the cationic and τ 2 =3.3 ns for the neutral form of II . The excited‐state proton exchange of II at near‐neutral pH becomes reversible on addition of phosphate (H 2 PO 4 − /HPO 4 2− ) buffer, and a pH‐dependent change of the fluorescence decay times is induced. Global compartmental analysis of fluorescence decay traces collected as a function of pH and phosphate buffer concentration was used to recover values of the deactivation rate constants of the excited cationic ( k 01 =2.4×10 8 s −1 ) and neutral ( k 02 =3.0×10 8 s −1 ) forms of II ." @default.
- W2022321402 created "2016-06-24" @default.
- W2022321402 creator A5023362799 @default.
- W2022321402 creator A5030076277 @default.
- W2022321402 creator A5031294379 @default.
- W2022321402 creator A5043926425 @default.
- W2022321402 creator A5043993808 @default.
- W2022321402 creator A5047497474 @default.
- W2022321402 creator A5057260712 @default.
- W2022321402 creator A5061096747 @default.
- W2022321402 creator A5082829867 @default.
- W2022321402 creator A5088774043 @default.
- W2022321402 date "2011-08-17" @default.
- W2022321402 modified "2023-10-18" @default.
- W2022321402 title "Rational Design, Synthesis, and Spectroscopic and Photophysical Properties of a Visible-Light-Excitable, Ratiometric, Fluorescent Near-Neutral pH Indicator Based on BODIPY" @default.
- W2022321402 cites W1963591584 @default.
- W2022321402 cites W1964522172 @default.
- W2022321402 cites W1965117208 @default.
- W2022321402 cites W1972121569 @default.
- W2022321402 cites W1975309940 @default.
- W2022321402 cites W1977605072 @default.
- W2022321402 cites W1981145527 @default.
- W2022321402 cites W1986057799 @default.
- W2022321402 cites W1987111451 @default.
- W2022321402 cites W1989880122 @default.
- W2022321402 cites W1997855068 @default.
- W2022321402 cites W2001768227 @default.
- W2022321402 cites W2003908111 @default.
- W2022321402 cites W2007104214 @default.
- W2022321402 cites W2007763975 @default.
- W2022321402 cites W2012017458 @default.
- W2022321402 cites W2013126473 @default.
- W2022321402 cites W2014511390 @default.
- W2022321402 cites W2016399550 @default.
- W2022321402 cites W2017058780 @default.
- W2022321402 cites W2020296913 @default.
- W2022321402 cites W2021023453 @default.
- W2022321402 cites W2023666065 @default.
- W2022321402 cites W2028426531 @default.
- W2022321402 cites W2034540003 @default.
- W2022321402 cites W2034831261 @default.
- W2022321402 cites W2039285094 @default.
- W2022321402 cites W2043331118 @default.
- W2022321402 cites W2046968439 @default.
- W2022321402 cites W2048722243 @default.
- W2022321402 cites W2051417691 @default.
- W2022321402 cites W2053567430 @default.
- W2022321402 cites W2060299685 @default.
- W2022321402 cites W2068405495 @default.
- W2022321402 cites W2070802503 @default.
- W2022321402 cites W2078970921 @default.
- W2022321402 cites W2081529545 @default.
- W2022321402 cites W2085569102 @default.
- W2022321402 cites W2086757937 @default.
- W2022321402 cites W2090711128 @default.
- W2022321402 cites W2106973449 @default.
- W2022321402 cites W2113981935 @default.
- W2022321402 cites W2120855572 @default.
- W2022321402 cites W2122442510 @default.
- W2022321402 cites W2126053884 @default.
- W2022321402 cites W2127677113 @default.
- W2022321402 cites W2129126460 @default.
- W2022321402 cites W2137784682 @default.
- W2022321402 cites W2144149256 @default.
- W2022321402 cites W2154298731 @default.
- W2022321402 cites W2336439072 @default.
- W2022321402 doi "https://doi.org/10.1002/chem.201002280" @default.
- W2022321402 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21932233" @default.
- W2022321402 hasPublicationYear "2011" @default.
- W2022321402 type Work @default.
- W2022321402 sameAs 2022321402 @default.
- W2022321402 citedByCount "62" @default.
- W2022321402 countsByYear W20223214022012 @default.
- W2022321402 countsByYear W20223214022013 @default.
- W2022321402 countsByYear W20223214022014 @default.
- W2022321402 countsByYear W20223214022015 @default.
- W2022321402 countsByYear W20223214022016 @default.
- W2022321402 countsByYear W20223214022017 @default.
- W2022321402 countsByYear W20223214022018 @default.
- W2022321402 countsByYear W20223214022019 @default.
- W2022321402 countsByYear W20223214022020 @default.
- W2022321402 countsByYear W20223214022022 @default.
- W2022321402 countsByYear W20223214022023 @default.
- W2022321402 crossrefType "journal-article" @default.
- W2022321402 hasAuthorship W2022321402A5023362799 @default.
- W2022321402 hasAuthorship W2022321402A5030076277 @default.
- W2022321402 hasAuthorship W2022321402A5031294379 @default.
- W2022321402 hasAuthorship W2022321402A5043926425 @default.
- W2022321402 hasAuthorship W2022321402A5043993808 @default.
- W2022321402 hasAuthorship W2022321402A5047497474 @default.
- W2022321402 hasAuthorship W2022321402A5057260712 @default.
- W2022321402 hasAuthorship W2022321402A5061096747 @default.
- W2022321402 hasAuthorship W2022321402A5082829867 @default.
- W2022321402 hasAuthorship W2022321402A5088774043 @default.
- W2022321402 hasConcept C116569031 @default.
- W2022321402 hasConcept C118629725 @default.
- W2022321402 hasConcept C121332964 @default.
- W2022321402 hasConcept C145148216 @default.