Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022324712> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2022324712 endingPage "16981" @default.
- W2022324712 startingPage "16975" @default.
- W2022324712 abstract "Recent molecular investigation revealed that two closely related structural genes encode distinct GDP-L-fucose:β-D-galactoside 2-α-L-fucosyltransferases (α1,2-fucosyltransferases). Some human cancer cells or tissues may express an aberrant α1,2-fucosyltransferase other than H- and Secretor-type α1,2-fucosyltransferase. However, definite evidence of the existence of a third type of α1,2-fucosyltransferase has not been demonstrated. Here we report the molecular cloning of a third type of rabbit α1,2-fucosyltransferase (RFT-III) from a rabbit genomic DNA library. The DNA sequence included an open reading frame coding for 347 amino acids, and the deduced amino acid sequence of RFT-III showed 59 and 80% identity with those of the previously reported two types of rabbit α1,2-fucosyltransferase, RFT-I and RFT-II, respectively. COS-7 cells transfected with the RFT-III gene exhibited α1,2-fucosyltransferase activity toward phenyl-β-Gal as a substrate. Neuro2a (a murine neuroblastoma cell line) cells transfected with the RFT-III gene expressed fucosyl GM1 (type 3 H) but not Ulex europaeus agglutinin-1 lectin reactive antigens (type 2 H). Kinetic studies revealed that RFT-III exhibits higher affinity to types 1 (Galβ1, 3GlcNAc) and 3 (Galβ1, 3GalNAc) than to type 2 (Galβ1, 4GlcNAc) oligosaccharides, which suggests that RFT-III as well as RFT-II is a Secretor-type α1,2-fucosyltransferase. RFT-III was expressed in the adult gastrointestinal tract. The RFT-I, −II, and −III genes were assigned within 90 kilobases on pulsed field gel electrophoresis analysis. These results constitute direct evidence that, at least in one mammalian species, three active α1,2-fucosyltransferases exist. Recent molecular investigation revealed that two closely related structural genes encode distinct GDP-L-fucose:β-D-galactoside 2-α-L-fucosyltransferases (α1,2-fucosyltransferases). Some human cancer cells or tissues may express an aberrant α1,2-fucosyltransferase other than H- and Secretor-type α1,2-fucosyltransferase. However, definite evidence of the existence of a third type of α1,2-fucosyltransferase has not been demonstrated. Here we report the molecular cloning of a third type of rabbit α1,2-fucosyltransferase (RFT-III) from a rabbit genomic DNA library. The DNA sequence included an open reading frame coding for 347 amino acids, and the deduced amino acid sequence of RFT-III showed 59 and 80% identity with those of the previously reported two types of rabbit α1,2-fucosyltransferase, RFT-I and RFT-II, respectively. COS-7 cells transfected with the RFT-III gene exhibited α1,2-fucosyltransferase activity toward phenyl-β-Gal as a substrate. Neuro2a (a murine neuroblastoma cell line) cells transfected with the RFT-III gene expressed fucosyl GM1 (type 3 H) but not Ulex europaeus agglutinin-1 lectin reactive antigens (type 2 H). Kinetic studies revealed that RFT-III exhibits higher affinity to types 1 (Galβ1, 3GlcNAc) and 3 (Galβ1, 3GalNAc) than to type 2 (Galβ1, 4GlcNAc) oligosaccharides, which suggests that RFT-III as well as RFT-II is a Secretor-type α1,2-fucosyltransferase. RFT-III was expressed in the adult gastrointestinal tract. The RFT-I, −II, and −III genes were assigned within 90 kilobases on pulsed field gel electrophoresis analysis. These results constitute direct evidence that, at least in one mammalian species, three active α1,2-fucosyltransferases exist. INTRODUCTIONGDP-L-fucose:β-D-galactoside 2-α-L-fucosyltransferase (α1,2-fucosyltransferase) 1The abbreviations used are: α1,2-fucosyltransferaseGDP-L-fucose:β-D-galactoside 2-α-L-fucosyltransferaseSe, SecretorLe, LewisDRGdorsal root gangliaUEA-1Ulex europaeus agglutinin-1FITCfluorescein isothiocyanatekbkilobase(s)UTRuntranslated regionPBSphosphate-buffered saline. The nomenclature for gangliosides and glycolipids follows the system of Svennerholm (25Svennerholm L. Adv. Exp. Biol. Med. 1980; 125: 533-544Crossref PubMed Scopus (125) Google Scholar) catalyzes the fucosylation of terminal β-D-Gal residues and synthesizes H antigens. The activity of α1,2-fucosyltransferase was detected in various tissues and body fluids of mammals that had several different kinetic characteristics (1Beyer T.A. Hill R.L. J. Biol. Chem. 1980; 255: 5373-5379Abstract Full Text PDF PubMed Google Scholar, 2Kumazaki T. Yoshida A. Proc. Natl. Acad. Sci. U. S. A. 1984; 81: 4193-4197Crossref PubMed Scopus (108) Google Scholar, 3Le Pendu J. Cartron J.P. Lemieux R.U. Oriol R. Am. J. Hum. Genet. 1985; 37: 749-760PubMed Google Scholar, 4Sarnesto A. Köhlin T. Thurin J. Blaszczyk-Thurin M. J. Biol. Chem. 1990; 265: 15067-15075Abstract Full Text PDF PubMed Google Scholar, 5Sarnesto A. Köhlin T. Hindsgaul O. Thurin J. Blaszczyk-Thurin M. J. Biol. Chem. 1992; 267: 2737-2744Abstract Full Text PDF PubMed Google Scholar). In humans, genetic and biochemical studies have indicated that two distinct but closely linked structural genes (H and Se) code α1,2-fucosyltransferases with tissue-specific patterns (1Beyer T.A. Hill R.L. J. Biol. Chem. 1980; 255: 5373-5379Abstract Full Text PDF PubMed Google Scholar, 6Le Pendu J. Lemieux R.U. Lambert F. Dalix A.-M. Oriol R. Am. J. Hum. Genet. 1982; 34: 402-415PubMed Google Scholar). The human H gene controls the expression of H (Fucα1,2Galβ) antigens (along with A or B antigens or both) on erythrocytes, whereas the Se gene determines the soluble A, B, and H antigens in secretory glands, and Lewisb blood group antigens on red cells (for review, see 7Watkins W.M. Adv. Hum. Genet. 1980; 10: 1-136PubMed Google Scholar). Homozygosity for null alleles for the H and Se genes yields the rare Bombay blood type and non-Secretor phenotype, respectively. Recent molecular cloning of the H and Se genes provided the molecular basis for the Bombay and para-Bombay blood types and the non-Secretor phenotype, respectively, revealing point mutations within the coding regions that abolish the α1,2-fucosyltransferase activity (8Larsen R.D. Ernst L.K. Nair R.P. Lowe J.B. Proc. Natl. Acad. Sci. U. S. A. 1990; 87: 6674-6678Crossref PubMed Scopus (300) Google Scholar, 9Kelly R.J. Ernst L.K. Larsen R.D. Bryant J.G. Robinson J.S. Lowe J.B. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 5843-5847Crossref PubMed Scopus (151) Google Scholar, 10Kelly R.J. Rouquier S. Giorgi D. Lennon G.G. Lowe J.B. J. Biol. Chem. 1995; 270: 4640-4649Abstract Full Text Full Text PDF PubMed Scopus (468) Google Scholar). On the other hand, the Lewis phenotyping of erythrocytes and secretory glands revealed the Le(a+b+) and partial Secretor phenotypes in selected Polynesian and Asian individuals (11Henry S.M. Benny A.G. Woodfield D.G. Vox Sang. 1990; 58: 61-66Crossref PubMed Scopus (32) Google Scholar, 12Henry S.M. Oriol R. Samuelsson B.E. Glycoconj. J. 1994; 11: 593-599Crossref PubMed Scopus (15) Google Scholar). These phenotypes, which are virtually absent in Caucasians, are thought to be caused by weak Se-type α1,2-fucosyltransferase activity. The molecular basis of weak Secretor phenotypes, whether weak Se-type α1,2-fucosyltransferase is encoded by an altered Se gene or a gene other than H and Se, has yet to be determined.Recently, aberrant α1,2-fucosyltransferase activity, which synthesized Leb from Lea or Ley from the Lex determinant, or both, was found in cancer cells and tissues, suggesting the possibility of a third distinct α1,2-fucosyltransferase gene (13Blaszczyk-Thurin M. Sarnesto A. Thurin Y. Hindsgaul O. Koprowski H. Biochem. Biophys. Res. Commun. 1988; 151: 100-108Crossref PubMed Scopus (18) Google Scholar, 14Yazawa S. Nakamura J. Asao T. Nagamachi Y. Sagi M. Matta K.L. Tachikawa T. Akamatsu M. Jpn. J. Cancer Res. 1993; 84: 989-995Crossref PubMed Scopus (51) Google Scholar). In the rabbit, the possibility of a third type of α1,2-fucosyltransferase was suggested by immunohistochemical studies on DRG neurons. We recently cloned two types of rabbit α1,2-fucosyltransferase, RFT-I and RFT-II, showing that RFT-I but not RFT-II is expressed in postnatal rabbit brain (15Hitoshi S. Kusunoki S. Kanazawa I. Tsuji S. J. Biol. Chem. 1995; 270: 8844-8850Abstract Full Text Full Text PDF PubMed Scopus (47) Google Scholar). RFT-I shows comparable affinities to types 1, 2, and 3 acceptors, which suggests that the binding specificity of RFT-I is primarily restricted to the terminal β-D-Gal residues of acceptors. In rabbit DRG neurons, fucosyl GM1 (type 3 H) is readily detected immunohistochemically on embryonic day 25, followed by the appearance of UEA-1 lectin-reactive antigens (type 2 H) postnatally (16Kusunoki S. Inoue K. Iwamori M. Nagai Y. Mannen T. Kanazawa I. Neurosci. Res. 1992; 15: 74-80Crossref PubMed Scopus (18) Google Scholar, 17Kusunoki S. Chiba A. Shimizu T. Kanazawa I. Biochim. Biophys. Acta. 1994; 1214: 27-31Crossref PubMed Scopus (11) Google Scholar). UEA-1 lectin-reactive antigens of DRG neurons in postnatal rabbits could be formed through fucosylation catalyzed by RFT-I. In contrast, fucosyl GM1 observed in DRG neurons of embryonic day 25 rabbits might not be the product of RFT-I because UEA-1 lectin-reactive antigens are not detected at that stage. This observation suggests the existence of another type of α1,2-fucosyltransferase that catalyzes preferential fucosylation to type 3 rather than type 2 glycochains.Here we report the molecular cloning of a third type of rabbit α1,2-fucosyltransferase, which could synthesize fucosyl GM1. This is the first direct evidence that, at least in one mammalian species, three active α1,2-fucosyltransferases exist.DISCUSSIONIn this and previous work (15Hitoshi S. Kusunoki S. Kanazawa I. Tsuji S. J. Biol. Chem. 1995; 270: 8844-8850Abstract Full Text Full Text PDF PubMed Scopus (47) Google Scholar) we reported the molecular cloning of three types of rabbit α1,2-fucosyltransferase, RFT-I, −II, and −III. These results constitute direct evidence that, at least in one mammalian species, three active α1,2-fucosyltransferases exist, one H type and two Se types, based on kinetic analysis.RFT-I exhibits comparable kinetic properties and significant structural homology with human H-type α1,2-fucosyltransferase, indicating that RFT-I is a counterpart of human H. RFT-II and −III show higher affinity to types 1 and 3 acceptors than to type 2 acceptors and phenyl-β-D-Gal. The kinetic parameters of RFT-II and −III are comparable with those of human Se-type α1,2-fucosyltransferase (2Kumazaki T. Yoshida A. Proc. Natl. Acad. Sci. U. S. A. 1984; 81: 4193-4197Crossref PubMed Scopus (108) Google Scholar, 3Le Pendu J. Cartron J.P. Lemieux R.U. Oriol R. Am. J. Hum. Genet. 1985; 37: 749-760PubMed Google Scholar, 5Sarnesto A. Köhlin T. Hindsgaul O. Thurin J. Blaszczyk-Thurin M. J. Biol. Chem. 1992; 267: 2737-2744Abstract Full Text PDF PubMed Google Scholar). RFT-II and −III genes share remarkably conserved base pair sequence in the putative active domain (95%) as compared with the RFT-I gene. RFT-II and −III are thought to constitute Se-type α1,2-fucosyltransferase family. A recent report (10Kelly R.J. Rouquier S. Giorgi D. Lennon G.G. Lowe J.B. J. Biol. Chem. 1995; 270: 4640-4649Abstract Full Text Full Text PDF PubMed Scopus (468) Google Scholar) of the molecular cloning of human Se gene enables us to compare it with RFT-II and −III genes, as it was revealed that RFT-III exhibits higher amino acid identity with human Se than RFT-II. These findings led us to conclude that RFT-III is a counterpart of the human Se.The RFT-I, −II, and −III genes are assigned within approximately 90 kb, both RFT-II and −III genes being located in 3′ region of RFT-I, based on the results of pulsed field gel electrophoresis. The physical relationship of the RFT-I, −II, and −III genes are consistent with that of the human H, Se, and Sec1, α1,2-fucosyltransferase-related pseudogenes (22Rouquier S. Lowe J.B. Kelly R.J. Fertitta A.L. Lennon G.G. Giorgi D. J. Biol. Chem. 1995; 270: 4632-4639Abstract Full Text Full Text PDF PubMed Scopus (160) Google Scholar). These results suggest that RFT-II corresponds to the human Sec1 gene. This idea is further supported by the structural analysis showing that the putative cytoplasmic, transmembrane, and stem domains of RFT-II and human Sec1 are well conserved as compared with other α1,2-fucosyltransferases (Table I). In this case, an ancestral Se gene is thought to have been duplicated into two related genes, one of which was subsequently inactivated by the frameshift mutations in humans. Site-directed point mutation analysis of the Sec1 gene, which corrects the frameshift, and kinetic studies on α1,2-fucosyltransferase activity of the mutants will provide further information on the relationship between RFT-II and Sec1. It is difficult to know the exact correspondence of recently cloned fragment of rat or porcine α1,2-fucosyltransferases (23Piau J.-P. Labarriere N. Dabouis G. Denis M.G. Biochem. J. 1994; 300: 623-626Crossref PubMed Scopus (35) Google Scholar, 24Thurin J. Blaszczyk-Thurin M. J. Biol. Chem. 1995; 270: 26577-26580Abstract Full Text Full Text PDF PubMed Scopus (13) Google Scholar) to RFT-I, −II, or −III, because all α1,2-fucosyltransferases, including the human and rabbit H type and Se types, exhibit high homology.It is interesting to consider that RFT-II represents a weak Se-type α1,2-fucosyltransferase. The weak Se-type α1,2-fucosyltransferase was postulated based on the results of Lewis phenotype analysis in Polynesian people. The Lewis antigens on erythrocytes are regulated by two fucosyltransferases, Se-type α1,2- and Lewis α1,3/4-fucosyltransferases. With the conventional analysis method, three Lewis phenotypes of erythrocytes were found in Caucasian adults, Le(a−b−), Le(a+b−), and Le(a−b+). When Se-type α1,2-fucosyltransferase is active (or in Secretor), most of the type 1 precursor is converted into type 1 H, which can be transformed into Leb by Lewis α1,3/4-fucosyltransferase. On the other hand, a fourth Lewis phenotype, Le(a+b+), was found on erythrocytes from selected Polynesian individuals. In addition, low levels of salivary ABH antigens, that is partial secretion, were found in saliva from Le(a+b−) and Le(a+b+) individuals, suggesting the presence of a weak Se-type α1,2-fucosyltransferase (11Henry S.M. Benny A.G. Woodfield D.G. Vox Sang. 1990; 58: 61-66Crossref PubMed Scopus (32) Google Scholar, 12Henry S.M. Oriol R. Samuelsson B.E. Glycoconj. J. 1994; 11: 593-599Crossref PubMed Scopus (15) Google Scholar). Molecular analysis of the Se and Sec1 genes of Polynesian people, especially of partial Secretor individuals, will facilitate determination of whether or not RFT-II corresponds to the human Sec1 gene.The fucosyltransferase assay showed that the relative activity of RFT-III toward GM1 as to glycoproteins was higher than that of RFT-I. RFT-III could also synthesize fucosyl GM1 from GM1 but not UEA-1 reactive antigens when expressed in Neuro2a cells, where RFT-I could form both and RFT-II could synthesize neither under the same transfection conditions. RFT-III is a good candidate for the enzyme that synthesizes fucosyl GM1 expressed in a subpopulation of neurons of rabbit embryonic DRG (16Kusunoki S. Inoue K. Iwamori M. Nagai Y. Mannen T. Kanazawa I. Neurosci. Res. 1992; 15: 74-80Crossref PubMed Scopus (18) Google Scholar, 17Kusunoki S. Chiba A. Shimizu T. Kanazawa I. Biochim. Biophys. Acta. 1994; 1214: 27-31Crossref PubMed Scopus (11) Google Scholar), although we could not detect the expression of RFT-III in embryonic brain. It is possible that the expression of RFT-III is restricted to specific regions or specific types of neurons. In situ hybridization analysis will provide further information.Recently, aberrant α1,2-fucosyltransferase activity that synthesized Leb from Lea or Ley from the Lex determinant, or both, was found in cancer cells or tissues (13Blaszczyk-Thurin M. Sarnesto A. Thurin Y. Hindsgaul O. Koprowski H. Biochem. Biophys. Res. Commun. 1988; 151: 100-108Crossref PubMed Scopus (18) Google Scholar, 14Yazawa S. Nakamura J. Asao T. Nagamachi Y. Sagi M. Matta K.L. Tachikawa T. Akamatsu M. Jpn. J. Cancer Res. 1993; 84: 989-995Crossref PubMed Scopus (51) Google Scholar). The classical models assume that Leb and Ley determinants are synthesized through the sequential actions of α1,2- and α1,3/4-fucosyltransferases through H determinants. In this case, α1,2-fucosyltransferase is not postulated to catalyze the fucosylation of Lea or Lex determinants. Accordingly, the α1,2-fucosyltransferase activity that formed Leb from Lea or Ley from the Lex determinant, or both, was supposed to represent an aberrant or new enzyme. In this study, however, we demonstrated that enzyme preparations from COS-7 cells transfected with rabbit α1,2-fucosyltransferases contained activity that fucosylated Lea or Lex or both determinants. Cancer cells or tissues of gastrointestinal origin might, we think, express an unusually large amount of H or Se α1,2-fucosyltransferase but not express an unusual α1,2-fucosyltransferase.Bombay individuals who lack active H and Se genes but who show no apparent abnormal phenotype cast doubt on the physiological role of α1,2-fucosylation of glycoconjugates. However, it remains possible that another α1,2-fucosyltransferase may operate at specific developmental stages or in restricted tissues or regions. This possibility was increased by the present study, in which we showed that at least in one mammalian species three active α1,2-fucosyltransferases exist. INTRODUCTIONGDP-L-fucose:β-D-galactoside 2-α-L-fucosyltransferase (α1,2-fucosyltransferase) 1The abbreviations used are: α1,2-fucosyltransferaseGDP-L-fucose:β-D-galactoside 2-α-L-fucosyltransferaseSe, SecretorLe, LewisDRGdorsal root gangliaUEA-1Ulex europaeus agglutinin-1FITCfluorescein isothiocyanatekbkilobase(s)UTRuntranslated regionPBSphosphate-buffered saline. The nomenclature for gangliosides and glycolipids follows the system of Svennerholm (25Svennerholm L. Adv. Exp. Biol. Med. 1980; 125: 533-544Crossref PubMed Scopus (125) Google Scholar) catalyzes the fucosylation of terminal β-D-Gal residues and synthesizes H antigens. The activity of α1,2-fucosyltransferase was detected in various tissues and body fluids of mammals that had several different kinetic characteristics (1Beyer T.A. Hill R.L. J. Biol. Chem. 1980; 255: 5373-5379Abstract Full Text PDF PubMed Google Scholar, 2Kumazaki T. Yoshida A. Proc. Natl. Acad. Sci. U. S. A. 1984; 81: 4193-4197Crossref PubMed Scopus (108) Google Scholar, 3Le Pendu J. Cartron J.P. Lemieux R.U. Oriol R. Am. J. Hum. Genet. 1985; 37: 749-760PubMed Google Scholar, 4Sarnesto A. Köhlin T. Thurin J. Blaszczyk-Thurin M. J. Biol. Chem. 1990; 265: 15067-15075Abstract Full Text PDF PubMed Google Scholar, 5Sarnesto A. Köhlin T. Hindsgaul O. Thurin J. Blaszczyk-Thurin M. J. Biol. Chem. 1992; 267: 2737-2744Abstract Full Text PDF PubMed Google Scholar). In humans, genetic and biochemical studies have indicated that two distinct but closely linked structural genes (H and Se) code α1,2-fucosyltransferases with tissue-specific patterns (1Beyer T.A. Hill R.L. J. Biol. Chem. 1980; 255: 5373-5379Abstract Full Text PDF PubMed Google Scholar, 6Le Pendu J. Lemieux R.U. Lambert F. Dalix A.-M. Oriol R. Am. J. Hum. Genet. 1982; 34: 402-415PubMed Google Scholar). The human H gene controls the expression of H (Fucα1,2Galβ) antigens (along with A or B antigens or both) on erythrocytes, whereas the Se gene determines the soluble A, B, and H antigens in secretory glands, and Lewisb blood group antigens on red cells (for review, see 7Watkins W.M. Adv. Hum. Genet. 1980; 10: 1-136PubMed Google Scholar). Homozygosity for null alleles for the H and Se genes yields the rare Bombay blood type and non-Secretor phenotype, respectively. Recent molecular cloning of the H and Se genes provided the molecular basis for the Bombay and para-Bombay blood types and the non-Secretor phenotype, respectively, revealing point mutations within the coding regions that abolish the α1,2-fucosyltransferase activity (8Larsen R.D. Ernst L.K. Nair R.P. Lowe J.B. Proc. Natl. Acad. Sci. U. S. A. 1990; 87: 6674-6678Crossref PubMed Scopus (300) Google Scholar, 9Kelly R.J. Ernst L.K. Larsen R.D. Bryant J.G. Robinson J.S. Lowe J.B. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 5843-5847Crossref PubMed Scopus (151) Google Scholar, 10Kelly R.J. Rouquier S. Giorgi D. Lennon G.G. Lowe J.B. J. Biol. Chem. 1995; 270: 4640-4649Abstract Full Text Full Text PDF PubMed Scopus (468) Google Scholar). On the other hand, the Lewis phenotyping of erythrocytes and secretory glands revealed the Le(a+b+) and partial Secretor phenotypes in selected Polynesian and Asian individuals (11Henry S.M. Benny A.G. Woodfield D.G. Vox Sang. 1990; 58: 61-66Crossref PubMed Scopus (32) Google Scholar, 12Henry S.M. Oriol R. Samuelsson B.E. Glycoconj. J. 1994; 11: 593-599Crossref PubMed Scopus (15) Google Scholar). These phenotypes, which are virtually absent in Caucasians, are thought to be caused by weak Se-type α1,2-fucosyltransferase activity. The molecular basis of weak Secretor phenotypes, whether weak Se-type α1,2-fucosyltransferase is encoded by an altered Se gene or a gene other than H and Se, has yet to be determined.Recently, aberrant α1,2-fucosyltransferase activity, which synthesized Leb from Lea or Ley from the Lex determinant, or both, was found in cancer cells and tissues, suggesting the possibility of a third distinct α1,2-fucosyltransferase gene (13Blaszczyk-Thurin M. Sarnesto A. Thurin Y. Hindsgaul O. Koprowski H. Biochem. Biophys. Res. Commun. 1988; 151: 100-108Crossref PubMed Scopus (18) Google Scholar, 14Yazawa S. Nakamura J. Asao T. Nagamachi Y. Sagi M. Matta K.L. Tachikawa T. Akamatsu M. Jpn. J. Cancer Res. 1993; 84: 989-995Crossref PubMed Scopus (51) Google Scholar). In the rabbit, the possibility of a third type of α1,2-fucosyltransferase was suggested by immunohistochemical studies on DRG neurons. We recently cloned two types of rabbit α1,2-fucosyltransferase, RFT-I and RFT-II, showing that RFT-I but not RFT-II is expressed in postnatal rabbit brain (15Hitoshi S. Kusunoki S. Kanazawa I. Tsuji S. J. Biol. Chem. 1995; 270: 8844-8850Abstract Full Text Full Text PDF PubMed Scopus (47) Google Scholar). RFT-I shows comparable affinities to types 1, 2, and 3 acceptors, which suggests that the binding specificity of RFT-I is primarily restricted to the terminal β-D-Gal residues of acceptors. In rabbit DRG neurons, fucosyl GM1 (type 3 H) is readily detected immunohistochemically on embryonic day 25, followed by the appearance of UEA-1 lectin-reactive antigens (type 2 H) postnatally (16Kusunoki S. Inoue K. Iwamori M. Nagai Y. Mannen T. Kanazawa I. Neurosci. Res. 1992; 15: 74-80Crossref PubMed Scopus (18) Google Scholar, 17Kusunoki S. Chiba A. Shimizu T. Kanazawa I. Biochim. Biophys. Acta. 1994; 1214: 27-31Crossref PubMed Scopus (11) Google Scholar). UEA-1 lectin-reactive antigens of DRG neurons in postnatal rabbits could be formed through fucosylation catalyzed by RFT-I. In contrast, fucosyl GM1 observed in DRG neurons of embryonic day 25 rabbits might not be the product of RFT-I because UEA-1 lectin-reactive antigens are not detected at that stage. This observation suggests the existence of another type of α1,2-fucosyltransferase that catalyzes preferential fucosylation to type 3 rather than type 2 glycochains.Here we report the molecular cloning of a third type of rabbit α1,2-fucosyltransferase, which could synthesize fucosyl GM1. This is the first direct evidence that, at least in one mammalian species, three active α1,2-fucosyltransferases exist." @default.
- W2022324712 created "2016-06-24" @default.
- W2022324712 creator A5014113547 @default.
- W2022324712 creator A5034777871 @default.
- W2022324712 creator A5036040469 @default.
- W2022324712 creator A5060389174 @default.
- W2022324712 date "1996-07-01" @default.
- W2022324712 modified "2023-10-17" @default.
- W2022324712 title "Molecular Cloning and Expression of a Third Type of Rabbit GDP-L-Fucose:β-D-Galactoside 2-α-L-Fucosyltransferase" @default.
- W2022324712 cites W1493639935 @default.
- W2022324712 cites W1510285220 @default.
- W2022324712 cites W1570592551 @default.
- W2022324712 cites W1659796181 @default.
- W2022324712 cites W1987034586 @default.
- W2022324712 cites W1991364667 @default.
- W2022324712 cites W1993934770 @default.
- W2022324712 cites W1997993215 @default.
- W2022324712 cites W2024722013 @default.
- W2022324712 cites W2025372492 @default.
- W2022324712 cites W2025552036 @default.
- W2022324712 cites W2045478474 @default.
- W2022324712 cites W2047521922 @default.
- W2022324712 cites W2064673065 @default.
- W2022324712 cites W2082505330 @default.
- W2022324712 cites W2085555653 @default.
- W2022324712 cites W2087813473 @default.
- W2022324712 cites W2414395870 @default.
- W2022324712 cites W4376052236 @default.
- W2022324712 cites W656670205 @default.
- W2022324712 doi "https://doi.org/10.1074/jbc.271.28.16975" @default.
- W2022324712 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/8663168" @default.
- W2022324712 hasPublicationYear "1996" @default.
- W2022324712 type Work @default.
- W2022324712 sameAs 2022324712 @default.
- W2022324712 citedByCount "43" @default.
- W2022324712 countsByYear W20223247122015 @default.
- W2022324712 crossrefType "journal-article" @default.
- W2022324712 hasAuthorship W2022324712A5014113547 @default.
- W2022324712 hasAuthorship W2022324712A5034777871 @default.
- W2022324712 hasAuthorship W2022324712A5036040469 @default.
- W2022324712 hasAuthorship W2022324712A5060389174 @default.
- W2022324712 hasConcept C104317684 @default.
- W2022324712 hasConcept C121050878 @default.
- W2022324712 hasConcept C150194340 @default.
- W2022324712 hasConcept C153911025 @default.
- W2022324712 hasConcept C181199279 @default.
- W2022324712 hasConcept C185592680 @default.
- W2022324712 hasConcept C19924922 @default.
- W2022324712 hasConcept C199360897 @default.
- W2022324712 hasConcept C2776392439 @default.
- W2022324712 hasConcept C2776841590 @default.
- W2022324712 hasConcept C2777762822 @default.
- W2022324712 hasConcept C2778173381 @default.
- W2022324712 hasConcept C2779212266 @default.
- W2022324712 hasConcept C41008148 @default.
- W2022324712 hasConcept C55493867 @default.
- W2022324712 hasConcept C86803240 @default.
- W2022324712 hasConceptScore W2022324712C104317684 @default.
- W2022324712 hasConceptScore W2022324712C121050878 @default.
- W2022324712 hasConceptScore W2022324712C150194340 @default.
- W2022324712 hasConceptScore W2022324712C153911025 @default.
- W2022324712 hasConceptScore W2022324712C181199279 @default.
- W2022324712 hasConceptScore W2022324712C185592680 @default.
- W2022324712 hasConceptScore W2022324712C19924922 @default.
- W2022324712 hasConceptScore W2022324712C199360897 @default.
- W2022324712 hasConceptScore W2022324712C2776392439 @default.
- W2022324712 hasConceptScore W2022324712C2776841590 @default.
- W2022324712 hasConceptScore W2022324712C2777762822 @default.
- W2022324712 hasConceptScore W2022324712C2778173381 @default.
- W2022324712 hasConceptScore W2022324712C2779212266 @default.
- W2022324712 hasConceptScore W2022324712C41008148 @default.
- W2022324712 hasConceptScore W2022324712C55493867 @default.
- W2022324712 hasConceptScore W2022324712C86803240 @default.
- W2022324712 hasIssue "28" @default.
- W2022324712 hasLocation W20223247121 @default.
- W2022324712 hasOpenAccess W2022324712 @default.
- W2022324712 hasPrimaryLocation W20223247121 @default.
- W2022324712 hasRelatedWork W1991887201 @default.
- W2022324712 hasRelatedWork W2002120802 @default.
- W2022324712 hasRelatedWork W2004986312 @default.
- W2022324712 hasRelatedWork W2008842285 @default.
- W2022324712 hasRelatedWork W2028984335 @default.
- W2022324712 hasRelatedWork W2055465436 @default.
- W2022324712 hasRelatedWork W2129373464 @default.
- W2022324712 hasRelatedWork W2209907559 @default.
- W2022324712 hasRelatedWork W3087561948 @default.
- W2022324712 hasRelatedWork W3120572914 @default.
- W2022324712 hasVolume "271" @default.
- W2022324712 isParatext "false" @default.
- W2022324712 isRetracted "false" @default.
- W2022324712 magId "2022324712" @default.
- W2022324712 workType "article" @default.