Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022333306> ?p ?o ?g. }
- W2022333306 endingPage "698" @default.
- W2022333306 startingPage "692" @default.
- W2022333306 abstract "Background Total subcutaneous implantable subcutaneous defibrillators are in development, but optimal electrode configurations are not known. Objective We used image-based finite element models (FEM) to predict the myocardial electric field generated during defibrillation shocks (pseudo-DFT) in a wide variety of reported and innovative subcutaneous electrode positions to determine factors affecting optimal lead positions for subcutaneous implantable cardioverter-defibrillators (S-ICD). Methods An image-based FEM of an adult man was used to predict pseudo-DFTs across a wide range of technically feasible S-ICD electrode placements. Generator location, lead location, length, geometry and orientation, and spatial relation of electrodes to ventricular mass were systematically varied. Best electrode configurations were determined, and spatial factors contributing to low pseudo-DFTs were identified using regression and general linear models. Results A total of 122 single-electrode/array configurations and 28 dual-electrode configurations were simulated. Pseudo-DFTs for single-electrode orientations ranged from 0.60 to 16.0 (mean 2.65 ± 2.48) times that predicted for the base case, an anterior–posterior configuration recently tested clinically. A total of 32 of 150 tested configurations (21%) had pseudo-DFT ratios ≤1, indicating the possibility of multiple novel, efficient, and clinically relevant orientations. Favorable alignment of lead-generator vector with ventricular myocardium and increased lead length were the most important factors correlated with pseudo-DFT, accounting for 70% of the predicted variation (R2 = 0.70, each factor P < .05) in a combined general linear model in which parameter estimates were calculated for each factor. Conclusion Further exploration of novel and efficient electrode configurations may be of value in the development of the S-ICD technologies and implant procedure. FEM modeling suggests that the choice of configurations that maximize shock vector alignment with the center of myocardial mass and use of longer leads is more likely to result in lower DFT. Total subcutaneous implantable subcutaneous defibrillators are in development, but optimal electrode configurations are not known. We used image-based finite element models (FEM) to predict the myocardial electric field generated during defibrillation shocks (pseudo-DFT) in a wide variety of reported and innovative subcutaneous electrode positions to determine factors affecting optimal lead positions for subcutaneous implantable cardioverter-defibrillators (S-ICD). An image-based FEM of an adult man was used to predict pseudo-DFTs across a wide range of technically feasible S-ICD electrode placements. Generator location, lead location, length, geometry and orientation, and spatial relation of electrodes to ventricular mass were systematically varied. Best electrode configurations were determined, and spatial factors contributing to low pseudo-DFTs were identified using regression and general linear models. A total of 122 single-electrode/array configurations and 28 dual-electrode configurations were simulated. Pseudo-DFTs for single-electrode orientations ranged from 0.60 to 16.0 (mean 2.65 ± 2.48) times that predicted for the base case, an anterior–posterior configuration recently tested clinically. A total of 32 of 150 tested configurations (21%) had pseudo-DFT ratios ≤1, indicating the possibility of multiple novel, efficient, and clinically relevant orientations. Favorable alignment of lead-generator vector with ventricular myocardium and increased lead length were the most important factors correlated with pseudo-DFT, accounting for 70% of the predicted variation (R2 = 0.70, each factor P < .05) in a combined general linear model in which parameter estimates were calculated for each factor. Further exploration of novel and efficient electrode configurations may be of value in the development of the S-ICD technologies and implant procedure. FEM modeling suggests that the choice of configurations that maximize shock vector alignment with the center of myocardial mass and use of longer leads is more likely to result in lower DFT." @default.
- W2022333306 created "2016-06-24" @default.
- W2022333306 creator A5005895268 @default.
- W2022333306 creator A5018251647 @default.
- W2022333306 creator A5022792894 @default.
- W2022333306 creator A5023208947 @default.
- W2022333306 creator A5023536951 @default.
- W2022333306 creator A5036284727 @default.
- W2022333306 creator A5055388471 @default.
- W2022333306 creator A5074993024 @default.
- W2022333306 date "2010-05-01" @default.
- W2022333306 modified "2023-09-23" @default.
- W2022333306 title "Finite element modeling of subcutaneous implantable defibrillator electrodes in an adult torso" @default.
- W2022333306 cites W1558269430 @default.
- W2022333306 cites W1966577907 @default.
- W2022333306 cites W1991634951 @default.
- W2022333306 cites W1999349447 @default.
- W2022333306 cites W2014148677 @default.
- W2022333306 cites W2028176430 @default.
- W2022333306 cites W2034633529 @default.
- W2022333306 cites W2041843348 @default.
- W2022333306 cites W2043355417 @default.
- W2022333306 cites W2051504546 @default.
- W2022333306 cites W2052046328 @default.
- W2022333306 cites W2055100925 @default.
- W2022333306 cites W2062689759 @default.
- W2022333306 cites W2068267903 @default.
- W2022333306 cites W2080024784 @default.
- W2022333306 cites W2106610189 @default.
- W2022333306 cites W2118611229 @default.
- W2022333306 cites W2119769698 @default.
- W2022333306 cites W2124013561 @default.
- W2022333306 cites W2130343771 @default.
- W2022333306 cites W2147606003 @default.
- W2022333306 cites W2149705458 @default.
- W2022333306 cites W2166010006 @default.
- W2022333306 cites W2313547185 @default.
- W2022333306 cites W2320382602 @default.
- W2022333306 doi "https://doi.org/10.1016/j.hrthm.2010.01.030" @default.
- W2022333306 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3103844" @default.
- W2022333306 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20230927" @default.
- W2022333306 hasPublicationYear "2010" @default.
- W2022333306 type Work @default.
- W2022333306 sameAs 2022333306 @default.
- W2022333306 citedByCount "38" @default.
- W2022333306 countsByYear W20223333062012 @default.
- W2022333306 countsByYear W20223333062013 @default.
- W2022333306 countsByYear W20223333062014 @default.
- W2022333306 countsByYear W20223333062016 @default.
- W2022333306 countsByYear W20223333062017 @default.
- W2022333306 countsByYear W20223333062018 @default.
- W2022333306 countsByYear W20223333062019 @default.
- W2022333306 countsByYear W20223333062020 @default.
- W2022333306 countsByYear W20223333062021 @default.
- W2022333306 countsByYear W20223333062022 @default.
- W2022333306 countsByYear W20223333062023 @default.
- W2022333306 crossrefType "journal-article" @default.
- W2022333306 hasAuthorship W2022333306A5005895268 @default.
- W2022333306 hasAuthorship W2022333306A5018251647 @default.
- W2022333306 hasAuthorship W2022333306A5022792894 @default.
- W2022333306 hasAuthorship W2022333306A5023208947 @default.
- W2022333306 hasAuthorship W2022333306A5023536951 @default.
- W2022333306 hasAuthorship W2022333306A5036284727 @default.
- W2022333306 hasAuthorship W2022333306A5055388471 @default.
- W2022333306 hasAuthorship W2022333306A5074993024 @default.
- W2022333306 hasBestOaLocation W20223333062 @default.
- W2022333306 hasConcept C105702510 @default.
- W2022333306 hasConcept C121332964 @default.
- W2022333306 hasConcept C127413603 @default.
- W2022333306 hasConcept C135628077 @default.
- W2022333306 hasConcept C136229726 @default.
- W2022333306 hasConcept C164705383 @default.
- W2022333306 hasConcept C17525397 @default.
- W2022333306 hasConcept C2777795826 @default.
- W2022333306 hasConcept C523889960 @default.
- W2022333306 hasConcept C62520636 @default.
- W2022333306 hasConcept C66938386 @default.
- W2022333306 hasConcept C71924100 @default.
- W2022333306 hasConceptScore W2022333306C105702510 @default.
- W2022333306 hasConceptScore W2022333306C121332964 @default.
- W2022333306 hasConceptScore W2022333306C127413603 @default.
- W2022333306 hasConceptScore W2022333306C135628077 @default.
- W2022333306 hasConceptScore W2022333306C136229726 @default.
- W2022333306 hasConceptScore W2022333306C164705383 @default.
- W2022333306 hasConceptScore W2022333306C17525397 @default.
- W2022333306 hasConceptScore W2022333306C2777795826 @default.
- W2022333306 hasConceptScore W2022333306C523889960 @default.
- W2022333306 hasConceptScore W2022333306C62520636 @default.
- W2022333306 hasConceptScore W2022333306C66938386 @default.
- W2022333306 hasConceptScore W2022333306C71924100 @default.
- W2022333306 hasIssue "5" @default.
- W2022333306 hasLocation W20223333061 @default.
- W2022333306 hasLocation W20223333062 @default.
- W2022333306 hasLocation W20223333063 @default.
- W2022333306 hasLocation W20223333064 @default.
- W2022333306 hasOpenAccess W2022333306 @default.
- W2022333306 hasPrimaryLocation W20223333061 @default.
- W2022333306 hasRelatedWork W1897105523 @default.