Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022337207> ?p ?o ?g. }
- W2022337207 endingPage "2273" @default.
- W2022337207 startingPage "2261" @default.
- W2022337207 abstract "Background: Ultrafine particles in urban air represent a potentially important health risk, and are not well characterized by mass concentrations like PM10 or PM2.5. The aerosol particle number concentration (PNC) is dominated by ultrafine particles, but urban PNC measurement campaigns have only recently started in many cities and missing data impedes much research. Hence, reliable estimation techniques are needed. Past estimations of ambient concentrations of particulate matter have focused on mass concentrations. This project developed city-specific models for estimating PNC using available data on other air pollutants and meteorological variables during a period when PNC was measured, and applied them retrospectively to predict daily PNC levels during the Health Effects of Air Pollution on Susceptible Subpopulations (HEAPSS) study period in order to enable epidemiological analyses. Methods: Monitoring of PNC began in April 2001 using condensation particle counters (3022A, TSI) in Augsburg, Barcelona, Helsinki, Rome, and Stockholm. Concurrent measurements of air pollutants and weather were used, as well as selected interactions between the two, to fit a regularized linear model (also called ridge regression). This technique is robust with respect to inclusion of irrelevant explanatory variables and can be modified to be highly tolerant of missing data, two highly beneficial features when there are many explanatory variables. Results: The most important predictor variables were the nitrogen oxides. The models appear to fit PNC data relatively well, with R2 of 0.77, 0.80, 0.58, 0.84, 0.81 respectively for the five cities. Split-halves analysis (modelling on half of the data with validation on the other half) indicates that the modelling process was fairly reliable. Conclusion: A statistical model can be applied to existing data on traffic-related air pollutants and weather variables in order to predict PNC levels. The retrospective prediction of PNC levels appears to be sufficiently reliable for use in epidemiological research." @default.
- W2022337207 created "2016-06-24" @default.
- W2022337207 creator A5000471665 @default.
- W2022337207 creator A5017861258 @default.
- W2022337207 creator A5021479776 @default.
- W2022337207 creator A5025489818 @default.
- W2022337207 creator A5025834807 @default.
- W2022337207 creator A5033645671 @default.
- W2022337207 creator A5034538225 @default.
- W2022337207 creator A5046359435 @default.
- W2022337207 creator A5047348776 @default.
- W2022337207 creator A5050677562 @default.
- W2022337207 creator A5064265283 @default.
- W2022337207 creator A5078040535 @default.
- W2022337207 creator A5078582181 @default.
- W2022337207 creator A5082505820 @default.
- W2022337207 date "2005-04-01" @default.
- W2022337207 modified "2023-10-01" @default.
- W2022337207 title "Estimating time series of aerosol particle number concentrations in the five HEAPSS cities on the basis of measured air pollution and meteorological variables" @default.
- W2022337207 cites W1489018618 @default.
- W2022337207 cites W1546521529 @default.
- W2022337207 cites W1970791504 @default.
- W2022337207 cites W1982023474 @default.
- W2022337207 cites W2003472324 @default.
- W2022337207 cites W2005607058 @default.
- W2022337207 cites W2035839412 @default.
- W2022337207 cites W2048525644 @default.
- W2022337207 cites W2049187457 @default.
- W2022337207 cites W2051433226 @default.
- W2022337207 cites W2073502316 @default.
- W2022337207 cites W2101306218 @default.
- W2022337207 cites W2117004231 @default.
- W2022337207 cites W2143171329 @default.
- W2022337207 cites W2169781816 @default.
- W2022337207 cites W2333813102 @default.
- W2022337207 cites W4231049616 @default.
- W2022337207 cites W4239713461 @default.
- W2022337207 doi "https://doi.org/10.1016/j.atmosenv.2004.12.036" @default.
- W2022337207 hasPublicationYear "2005" @default.
- W2022337207 type Work @default.
- W2022337207 sameAs 2022337207 @default.
- W2022337207 citedByCount "43" @default.
- W2022337207 countsByYear W20223372072012 @default.
- W2022337207 countsByYear W20223372072014 @default.
- W2022337207 countsByYear W20223372072015 @default.
- W2022337207 countsByYear W20223372072016 @default.
- W2022337207 countsByYear W20223372072017 @default.
- W2022337207 countsByYear W20223372072018 @default.
- W2022337207 countsByYear W20223372072020 @default.
- W2022337207 countsByYear W20223372072021 @default.
- W2022337207 countsByYear W20223372072022 @default.
- W2022337207 countsByYear W20223372072023 @default.
- W2022337207 crossrefType "journal-article" @default.
- W2022337207 hasAuthorship W2022337207A5000471665 @default.
- W2022337207 hasAuthorship W2022337207A5017861258 @default.
- W2022337207 hasAuthorship W2022337207A5021479776 @default.
- W2022337207 hasAuthorship W2022337207A5025489818 @default.
- W2022337207 hasAuthorship W2022337207A5025834807 @default.
- W2022337207 hasAuthorship W2022337207A5033645671 @default.
- W2022337207 hasAuthorship W2022337207A5034538225 @default.
- W2022337207 hasAuthorship W2022337207A5046359435 @default.
- W2022337207 hasAuthorship W2022337207A5047348776 @default.
- W2022337207 hasAuthorship W2022337207A5050677562 @default.
- W2022337207 hasAuthorship W2022337207A5064265283 @default.
- W2022337207 hasAuthorship W2022337207A5078040535 @default.
- W2022337207 hasAuthorship W2022337207A5078582181 @default.
- W2022337207 hasAuthorship W2022337207A5082505820 @default.
- W2022337207 hasConcept C105795698 @default.
- W2022337207 hasConcept C121332964 @default.
- W2022337207 hasConcept C126857682 @default.
- W2022337207 hasConcept C127313418 @default.
- W2022337207 hasConcept C147789679 @default.
- W2022337207 hasConcept C150032891 @default.
- W2022337207 hasConcept C152877465 @default.
- W2022337207 hasConcept C153294291 @default.
- W2022337207 hasConcept C178790620 @default.
- W2022337207 hasConcept C185592680 @default.
- W2022337207 hasConcept C18903297 @default.
- W2022337207 hasConcept C205649164 @default.
- W2022337207 hasConcept C24245907 @default.
- W2022337207 hasConcept C2779345167 @default.
- W2022337207 hasConcept C33923547 @default.
- W2022337207 hasConcept C39432304 @default.
- W2022337207 hasConcept C48921125 @default.
- W2022337207 hasConcept C521259446 @default.
- W2022337207 hasConcept C559116025 @default.
- W2022337207 hasConcept C62520636 @default.
- W2022337207 hasConcept C74412414 @default.
- W2022337207 hasConcept C82685317 @default.
- W2022337207 hasConcept C82706917 @default.
- W2022337207 hasConcept C86803240 @default.
- W2022337207 hasConcept C91586092 @default.
- W2022337207 hasConceptScore W2022337207C105795698 @default.
- W2022337207 hasConceptScore W2022337207C121332964 @default.
- W2022337207 hasConceptScore W2022337207C126857682 @default.
- W2022337207 hasConceptScore W2022337207C127313418 @default.
- W2022337207 hasConceptScore W2022337207C147789679 @default.
- W2022337207 hasConceptScore W2022337207C150032891 @default.