Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022337639> ?p ?o ?g. }
- W2022337639 endingPage "12448" @default.
- W2022337639 startingPage "12439" @default.
- W2022337639 abstract "Calcium phosphates ceramics are widely used as implants and scaffolds in different orthopedic and dental applications. Major chemical and physical properties of these bioceramics; such as solubility, biodegradation, and mechanical behavior; are dependent on their structures, which in turn are mostly determined by the calcium to phosphate (Ca/P) ratio in their empirical formula. In this study, the Ca/P ratio of wet chemically synthesized calcium phosphate powders was estimated using a three-layered back-propagation neural network (BPNN). Biphasic calcium phosphate (BCP) samples were synthesized via wet chemical method to prepare the training and testing data sets. The pH and Ca/P ratio of the reactants were considered as inputs and the Ca/P ratio of the products was considered as the output parameter. BPNN was then optimized by changing the number of samples for each stage and the number of hidden layer neurons. The accuracy of the optimized network was tested using additional empirical samples that had not been used in the training stage. The synthesized powders were characterized by X-ray diffraction and Fourier transform infrared spectroscopy techniques. Comparing the results of the predicted values and the experimental data indicate that the developed model has an acceptable accuracy in estimating the Ca/P ratio of the BCP powders, and that a proper correlation between the actual and calculated values exists. By predicting the Ca/P, synthesis condition can be tailored to obtain desired properties according to the biomaterial application requirements." @default.
- W2022337639 created "2016-06-24" @default.
- W2022337639 creator A5023758282 @default.
- W2022337639 creator A5053017998 @default.
- W2022337639 creator A5054083614 @default.
- W2022337639 creator A5076476809 @default.
- W2022337639 date "2014-09-01" @default.
- W2022337639 modified "2023-10-16" @default.
- W2022337639 title "Artificial neural network approach to estimate the composition of chemically synthesized biphasic calcium phosphate powders" @default.
- W2022337639 cites W1959891668 @default.
- W2022337639 cites W1965047048 @default.
- W2022337639 cites W1968347235 @default.
- W2022337639 cites W1969273329 @default.
- W2022337639 cites W1975451996 @default.
- W2022337639 cites W1983284863 @default.
- W2022337639 cites W1983625179 @default.
- W2022337639 cites W1984559752 @default.
- W2022337639 cites W1988109470 @default.
- W2022337639 cites W1990163112 @default.
- W2022337639 cites W2000040477 @default.
- W2022337639 cites W2001691208 @default.
- W2022337639 cites W2008900105 @default.
- W2022337639 cites W2011616190 @default.
- W2022337639 cites W2013496911 @default.
- W2022337639 cites W2017358747 @default.
- W2022337639 cites W2021592286 @default.
- W2022337639 cites W2026745140 @default.
- W2022337639 cites W2028253234 @default.
- W2022337639 cites W2028263700 @default.
- W2022337639 cites W2029062068 @default.
- W2022337639 cites W2031639432 @default.
- W2022337639 cites W2035317455 @default.
- W2022337639 cites W2036599383 @default.
- W2022337639 cites W2037651789 @default.
- W2022337639 cites W2042388260 @default.
- W2022337639 cites W2047279488 @default.
- W2022337639 cites W2049015318 @default.
- W2022337639 cites W2052466416 @default.
- W2022337639 cites W2056241560 @default.
- W2022337639 cites W2074648417 @default.
- W2022337639 cites W2075087568 @default.
- W2022337639 cites W2077909991 @default.
- W2022337639 cites W2082101462 @default.
- W2022337639 cites W2085898120 @default.
- W2022337639 cites W2093513190 @default.
- W2022337639 cites W2094837549 @default.
- W2022337639 cites W2098522181 @default.
- W2022337639 cites W2105246293 @default.
- W2022337639 cites W2108738029 @default.
- W2022337639 cites W2111415695 @default.
- W2022337639 cites W2113147520 @default.
- W2022337639 cites W2144395489 @default.
- W2022337639 cites W2154049866 @default.
- W2022337639 cites W2165684714 @default.
- W2022337639 cites W2404110689 @default.
- W2022337639 cites W2544335451 @default.
- W2022337639 cites W3014179099 @default.
- W2022337639 cites W4299422557 @default.
- W2022337639 doi "https://doi.org/10.1016/j.ceramint.2014.04.095" @default.
- W2022337639 hasPublicationYear "2014" @default.
- W2022337639 type Work @default.
- W2022337639 sameAs 2022337639 @default.
- W2022337639 citedByCount "15" @default.
- W2022337639 countsByYear W20223376392015 @default.
- W2022337639 countsByYear W20223376392016 @default.
- W2022337639 countsByYear W20223376392017 @default.
- W2022337639 countsByYear W20223376392018 @default.
- W2022337639 countsByYear W20223376392019 @default.
- W2022337639 countsByYear W20223376392020 @default.
- W2022337639 countsByYear W20223376392021 @default.
- W2022337639 countsByYear W20223376392022 @default.
- W2022337639 crossrefType "journal-article" @default.
- W2022337639 hasAuthorship W2022337639A5023758282 @default.
- W2022337639 hasAuthorship W2022337639A5053017998 @default.
- W2022337639 hasAuthorship W2022337639A5054083614 @default.
- W2022337639 hasAuthorship W2022337639A5076476809 @default.
- W2022337639 hasBestOaLocation W20223376391 @default.
- W2022337639 hasConcept C113196181 @default.
- W2022337639 hasConcept C119857082 @default.
- W2022337639 hasConcept C127413603 @default.
- W2022337639 hasConcept C134132462 @default.
- W2022337639 hasConcept C149849071 @default.
- W2022337639 hasConcept C155574463 @default.
- W2022337639 hasConcept C159985019 @default.
- W2022337639 hasConcept C160892712 @default.
- W2022337639 hasConcept C171250308 @default.
- W2022337639 hasConcept C178790620 @default.
- W2022337639 hasConcept C185592680 @default.
- W2022337639 hasConcept C191897082 @default.
- W2022337639 hasConcept C192562407 @default.
- W2022337639 hasConcept C199289684 @default.
- W2022337639 hasConcept C2777132085 @default.
- W2022337639 hasConcept C2778414984 @default.
- W2022337639 hasConcept C41008148 @default.
- W2022337639 hasConcept C42360764 @default.
- W2022337639 hasConcept C43617362 @default.
- W2022337639 hasConcept C50644808 @default.
- W2022337639 hasConcept C519063684 @default.