Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022345504> ?p ?o ?g. }
- W2022345504 abstract "Model order reduction has been the research focus for a long time in large system modeling and simulation field and is also of great significance in distribution grid simulations. However the model formulation requirements of many typical MOR (Model Order Reduction) methods restrict their applications in distribution grids. This paper presents an automated state-space model generation method of large-scale distribution networks for MOR application. The formulation requirements of general MOR methods can be well satisfied with this proposed model. It also shows great advantages over the commonly used MNA (Modified Nodal Analysis) formulation in many aspects. Simulations are performed using the benchmark low voltage test case, proving that the proposed method is feasible as a powerful tool in the modeling and simulation of large-scale distribution grids." @default.
- W2022345504 created "2016-06-24" @default.
- W2022345504 creator A5001810569 @default.
- W2022345504 creator A5008308657 @default.
- W2022345504 creator A5018665841 @default.
- W2022345504 creator A5032594700 @default.
- W2022345504 creator A5057580737 @default.
- W2022345504 creator A5068664937 @default.
- W2022345504 creator A5081729246 @default.
- W2022345504 creator A5085032833 @default.
- W2022345504 creator A5086149037 @default.
- W2022345504 date "2013-01-01" @default.
- W2022345504 modified "2023-09-23" @default.
- W2022345504 title "State-space model generation of distribution networks for model order reduction application" @default.
- W2022345504 cites W105611071 @default.
- W2022345504 cites W110690611 @default.
- W2022345504 cites W1623761495 @default.
- W2022345504 cites W1991705849 @default.
- W2022345504 cites W2101128707 @default.
- W2022345504 cites W2104991436 @default.
- W2022345504 cites W2112369634 @default.
- W2022345504 cites W2118468724 @default.
- W2022345504 cites W2122608783 @default.
- W2022345504 cites W2127155682 @default.
- W2022345504 cites W2135797872 @default.
- W2022345504 cites W2139030761 @default.
- W2022345504 cites W2143995107 @default.
- W2022345504 cites W2155968149 @default.
- W2022345504 cites W2158119364 @default.
- W2022345504 cites W2567349745 @default.
- W2022345504 cites W2023424931 @default.
- W2022345504 doi "https://doi.org/10.1109/pesmg.2013.6672287" @default.
- W2022345504 hasPublicationYear "2013" @default.
- W2022345504 type Work @default.
- W2022345504 sameAs 2022345504 @default.
- W2022345504 citedByCount "1" @default.
- W2022345504 countsByYear W20223455042014 @default.
- W2022345504 crossrefType "proceedings-article" @default.
- W2022345504 hasAuthorship W2022345504A5001810569 @default.
- W2022345504 hasAuthorship W2022345504A5008308657 @default.
- W2022345504 hasAuthorship W2022345504A5018665841 @default.
- W2022345504 hasAuthorship W2022345504A5032594700 @default.
- W2022345504 hasAuthorship W2022345504A5057580737 @default.
- W2022345504 hasAuthorship W2022345504A5068664937 @default.
- W2022345504 hasAuthorship W2022345504A5081729246 @default.
- W2022345504 hasAuthorship W2022345504A5085032833 @default.
- W2022345504 hasAuthorship W2022345504A5086149037 @default.
- W2022345504 hasConcept C105795698 @default.
- W2022345504 hasConcept C111335779 @default.
- W2022345504 hasConcept C11413529 @default.
- W2022345504 hasConcept C119599485 @default.
- W2022345504 hasConcept C120665830 @default.
- W2022345504 hasConcept C121332964 @default.
- W2022345504 hasConcept C126255220 @default.
- W2022345504 hasConcept C127413603 @default.
- W2022345504 hasConcept C13280743 @default.
- W2022345504 hasConcept C165801399 @default.
- W2022345504 hasConcept C185798385 @default.
- W2022345504 hasConcept C187691185 @default.
- W2022345504 hasConcept C192209626 @default.
- W2022345504 hasConcept C205649164 @default.
- W2022345504 hasConcept C2524010 @default.
- W2022345504 hasConcept C2778755073 @default.
- W2022345504 hasConcept C2779277453 @default.
- W2022345504 hasConcept C2780745134 @default.
- W2022345504 hasConcept C33923547 @default.
- W2022345504 hasConcept C41008148 @default.
- W2022345504 hasConcept C57493831 @default.
- W2022345504 hasConcept C62520636 @default.
- W2022345504 hasConcept C72434380 @default.
- W2022345504 hasConceptScore W2022345504C105795698 @default.
- W2022345504 hasConceptScore W2022345504C111335779 @default.
- W2022345504 hasConceptScore W2022345504C11413529 @default.
- W2022345504 hasConceptScore W2022345504C119599485 @default.
- W2022345504 hasConceptScore W2022345504C120665830 @default.
- W2022345504 hasConceptScore W2022345504C121332964 @default.
- W2022345504 hasConceptScore W2022345504C126255220 @default.
- W2022345504 hasConceptScore W2022345504C127413603 @default.
- W2022345504 hasConceptScore W2022345504C13280743 @default.
- W2022345504 hasConceptScore W2022345504C165801399 @default.
- W2022345504 hasConceptScore W2022345504C185798385 @default.
- W2022345504 hasConceptScore W2022345504C187691185 @default.
- W2022345504 hasConceptScore W2022345504C192209626 @default.
- W2022345504 hasConceptScore W2022345504C205649164 @default.
- W2022345504 hasConceptScore W2022345504C2524010 @default.
- W2022345504 hasConceptScore W2022345504C2778755073 @default.
- W2022345504 hasConceptScore W2022345504C2779277453 @default.
- W2022345504 hasConceptScore W2022345504C2780745134 @default.
- W2022345504 hasConceptScore W2022345504C33923547 @default.
- W2022345504 hasConceptScore W2022345504C41008148 @default.
- W2022345504 hasConceptScore W2022345504C57493831 @default.
- W2022345504 hasConceptScore W2022345504C62520636 @default.
- W2022345504 hasConceptScore W2022345504C72434380 @default.
- W2022345504 hasLocation W20223455041 @default.
- W2022345504 hasOpenAccess W2022345504 @default.
- W2022345504 hasPrimaryLocation W20223455041 @default.
- W2022345504 hasRelatedWork W2054411506 @default.
- W2022345504 hasRelatedWork W2178856536 @default.
- W2022345504 hasRelatedWork W2225670112 @default.
- W2022345504 hasRelatedWork W2246081260 @default.