Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022349211> ?p ?o ?g. }
- W2022349211 endingPage "1636" @default.
- W2022349211 startingPage "1621" @default.
- W2022349211 abstract "Abstract Water resource managers are frequently interested in river and stream classification systems to generalize stream conditions and establish management policies over large spatial scales. We used fish assemblage data from 745 river valley segments to develop a two‐level, river valley segment‐scale classification system of rivers and streams throughout Michigan. Regression tree analyses distinguished 10 segment types based on mean July temperature and network catchment area and 26 segment types when channel gradient was also considered. Nonmetric multidimensional scaling analyses suggested that fish assemblages differed among segment types but were only slightly influenced by channel gradient. Species that were indicative of specific segment types generally had habitat requirements that matched segment attributes. A test of classification strength using fish assemblage data from an additional 77 river valley segments indicated that the classification system performed significantly better than random groupings of river valley segments. Our classification system for river valley segments overcomes several weaknesses of the classifications previously used in Michigan, and our approach may prove beneficial for developing classifications elsewhere." @default.
- W2022349211 created "2016-06-24" @default.
- W2022349211 creator A5033468112 @default.
- W2022349211 creator A5055087136 @default.
- W2022349211 creator A5058679874 @default.
- W2022349211 date "2008-11-01" @default.
- W2022349211 modified "2023-10-17" @default.
- W2022349211 title "A River Valley Segment Classification of Michigan Streams Based on Fish and Physical Attributes" @default.
- W2022349211 cites W1505382222 @default.
- W2022349211 cites W1895164393 @default.
- W2022349211 cites W1966183826 @default.
- W2022349211 cites W1967865482 @default.
- W2022349211 cites W1969631772 @default.
- W2022349211 cites W1975125904 @default.
- W2022349211 cites W1979334332 @default.
- W2022349211 cites W1982949774 @default.
- W2022349211 cites W2001321094 @default.
- W2022349211 cites W2007646789 @default.
- W2022349211 cites W2010860576 @default.
- W2022349211 cites W2011370232 @default.
- W2022349211 cites W2022080165 @default.
- W2022349211 cites W2029102411 @default.
- W2022349211 cites W2039317838 @default.
- W2022349211 cites W2039810102 @default.
- W2022349211 cites W2043965817 @default.
- W2022349211 cites W2057930778 @default.
- W2022349211 cites W2061984778 @default.
- W2022349211 cites W2070109086 @default.
- W2022349211 cites W2070971207 @default.
- W2022349211 cites W2073223470 @default.
- W2022349211 cites W2074271779 @default.
- W2022349211 cites W2075051601 @default.
- W2022349211 cites W2087014302 @default.
- W2022349211 cites W2092700286 @default.
- W2022349211 cites W2093411711 @default.
- W2022349211 cites W2099534828 @default.
- W2022349211 cites W2101091387 @default.
- W2022349211 cites W2102746137 @default.
- W2022349211 cites W2102881302 @default.
- W2022349211 cites W2103407934 @default.
- W2022349211 cites W2116039109 @default.
- W2022349211 cites W2116935344 @default.
- W2022349211 cites W2117277933 @default.
- W2022349211 cites W2121101805 @default.
- W2022349211 cites W2122848119 @default.
- W2022349211 cites W2127761256 @default.
- W2022349211 cites W2133118492 @default.
- W2022349211 cites W2152454085 @default.
- W2022349211 cites W2164351958 @default.
- W2022349211 cites W2167723719 @default.
- W2022349211 cites W2169061517 @default.
- W2022349211 cites W2173929419 @default.
- W2022349211 cites W2501808843 @default.
- W2022349211 cites W4243986299 @default.
- W2022349211 cites W4299784666 @default.
- W2022349211 doi "https://doi.org/10.1577/t07-166.1" @default.
- W2022349211 hasPublicationYear "2008" @default.
- W2022349211 type Work @default.
- W2022349211 sameAs 2022349211 @default.
- W2022349211 citedByCount "46" @default.
- W2022349211 countsByYear W20223492112012 @default.
- W2022349211 countsByYear W20223492112013 @default.
- W2022349211 countsByYear W20223492112014 @default.
- W2022349211 countsByYear W20223492112015 @default.
- W2022349211 countsByYear W20223492112016 @default.
- W2022349211 countsByYear W20223492112017 @default.
- W2022349211 countsByYear W20223492112018 @default.
- W2022349211 countsByYear W20223492112019 @default.
- W2022349211 countsByYear W20223492112020 @default.
- W2022349211 countsByYear W20223492112021 @default.
- W2022349211 countsByYear W20223492112022 @default.
- W2022349211 countsByYear W20223492112023 @default.
- W2022349211 crossrefType "journal-article" @default.
- W2022349211 hasAuthorship W2022349211A5033468112 @default.
- W2022349211 hasAuthorship W2022349211A5055087136 @default.
- W2022349211 hasAuthorship W2022349211A5058679874 @default.
- W2022349211 hasBestOaLocation W20223492112 @default.
- W2022349211 hasConcept C126645576 @default.
- W2022349211 hasConcept C127162648 @default.
- W2022349211 hasConcept C127313418 @default.
- W2022349211 hasConcept C185933670 @default.
- W2022349211 hasConcept C187320778 @default.
- W2022349211 hasConcept C18903297 @default.
- W2022349211 hasConcept C205649164 @default.
- W2022349211 hasConcept C2778755073 @default.
- W2022349211 hasConcept C2909208804 @default.
- W2022349211 hasConcept C31258907 @default.
- W2022349211 hasConcept C39432304 @default.
- W2022349211 hasConcept C41008148 @default.
- W2022349211 hasConcept C42090638 @default.
- W2022349211 hasConcept C505870484 @default.
- W2022349211 hasConcept C58640448 @default.
- W2022349211 hasConcept C76886044 @default.
- W2022349211 hasConcept C86803240 @default.
- W2022349211 hasConceptScore W2022349211C126645576 @default.
- W2022349211 hasConceptScore W2022349211C127162648 @default.
- W2022349211 hasConceptScore W2022349211C127313418 @default.
- W2022349211 hasConceptScore W2022349211C185933670 @default.