Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022350381> ?p ?o ?g. }
- W2022350381 abstract "Electric-field-induced phase transitions have been evidenced by macroscopic strain measurements at temperatures between $25phantom{rule{0.2em}{0ex}}ifmmode^circelsetextdegreefi{}mathrm{C}$ and $100phantom{rule{0.2em}{0ex}}ifmmode^circelsetextdegreefi{}mathrm{C}$ in ${[001]}_{C}$-poled $(1ensuremath{-}x)mathrm{Pb}({mathrm{Mg}}_{1∕3}{mathrm{Nb}}_{2∕3}){mathrm{O}}_{3}ensuremath{-}xmathrm{Pb}mathrm{Ti}{mathrm{O}}_{3}phantom{rule{0.3em}{0ex}}[(mathrm{PMN}text{ensuremath{-}}xmathrm{PT});x=0.25,0.305,0.31]$ and $(1ensuremath{-}x)mathrm{Pb}({mathrm{Zn}}_{1∕3}{mathrm{Nb}}_{2∕3}){mathrm{O}}_{3}ensuremath{-}xmathrm{Pb}mathrm{Ti}{mathrm{O}}_{3}phantom{rule{0.3em}{0ex}}[(mathrm{PZN}text{ensuremath{-}}xmathrm{PT});x=0.05,0.065,0.085]$ single crystals. Such measurements provide a convenient way of ascertaining thermal and electrical phase stabilities over a range of compositions and give direct evidence for first-order phase transitions. A pseudorhombohedral $({M}_{A})$--pseudo-orthorhombic $({M}_{C})$--tetragonal $(T)$ polarization rotation path is evidenced by two first-order-like, hysteretic discontinuities in strain within the same unipolar electric field cycle for PZN-5PT, PMN-30.5PT, and PMN-31PT whereas, in PMN-25PT, a single first-order-like ${M}_{A}text{ensuremath{-}}T$ transition is observed. This agrees well with in situ structural studies reported elsewhere. Electric-field-temperature (E-T) phase diagrams are constructed showing general trends for ${M}_{A}$, ${M}_{C}$, and $T$ phase stabilities for varying temperatures and electric fields in poled samples over the given range of compositions. The complex question of whether the ${M}_{A}$ and ${M}_{C}$ states constitute true phases, or rather piezoelectrically distorted versions of their rhombohedral $(R)$ and orthorhombic $(O)$ parents, is discussed. Finally, stress-induced phase transitions are evidenced in ${[001]}_{C}$-poled PZN-4.5PT by application of a moderate compressive stress $(<100phantom{rule{0.3em}{0ex}}mathrm{MPa})$ both along and perpendicularly to the poling direction (longitudinal and transverse modes, respectively). The rotation path is likely $Rtext{ensuremath{-}}{M}_{B}text{ensuremath{-}}O$, via a first-order, hysteretic rotation within the ${M}_{B}$ monoclinic plane. The results are presented alongside a thorough review of previously reported electric-field-induced and stress-induced phase transitions in $mathrm{PMN}text{ensuremath{-}}xmathrm{PT}$ and $mathrm{PZN}text{ensuremath{-}}xmathrm{PT}$." @default.
- W2022350381 created "2016-06-24" @default.
- W2022350381 creator A5007423905 @default.
- W2022350381 creator A5063633425 @default.
- W2022350381 creator A5091105897 @default.
- W2022350381 date "2006-01-27" @default.
- W2022350381 modified "2023-10-14" @default.
- W2022350381 title "Electric-field-, temperature-, and stress-induced phase transitions in relaxor ferroelectric single crystals" @default.
- W2022350381 cites W107693199 @default.
- W2022350381 cites W1492920655 @default.
- W2022350381 cites W1507535325 @default.
- W2022350381 cites W1557917519 @default.
- W2022350381 cites W1559557316 @default.
- W2022350381 cites W1567056218 @default.
- W2022350381 cites W1574079858 @default.
- W2022350381 cites W1576061753 @default.
- W2022350381 cites W1611127511 @default.
- W2022350381 cites W1615928473 @default.
- W2022350381 cites W1619360419 @default.
- W2022350381 cites W1633002163 @default.
- W2022350381 cites W1650808075 @default.
- W2022350381 cites W1656255601 @default.
- W2022350381 cites W1662884298 @default.
- W2022350381 cites W1668611108 @default.
- W2022350381 cites W1670144878 @default.
- W2022350381 cites W1670346343 @default.
- W2022350381 cites W1882390993 @default.
- W2022350381 cites W1965930101 @default.
- W2022350381 cites W1966942014 @default.
- W2022350381 cites W1968472224 @default.
- W2022350381 cites W1968916890 @default.
- W2022350381 cites W1970374795 @default.
- W2022350381 cites W1971969924 @default.
- W2022350381 cites W1984157633 @default.
- W2022350381 cites W1986713916 @default.
- W2022350381 cites W1987380948 @default.
- W2022350381 cites W1991552688 @default.
- W2022350381 cites W1996309435 @default.
- W2022350381 cites W1997733541 @default.
- W2022350381 cites W2001502816 @default.
- W2022350381 cites W2004452201 @default.
- W2022350381 cites W2006333855 @default.
- W2022350381 cites W2013816167 @default.
- W2022350381 cites W2015375971 @default.
- W2022350381 cites W2019593384 @default.
- W2022350381 cites W2020367460 @default.
- W2022350381 cites W2021306251 @default.
- W2022350381 cites W2025814240 @default.
- W2022350381 cites W2026942592 @default.
- W2022350381 cites W2027550609 @default.
- W2022350381 cites W2029087323 @default.
- W2022350381 cites W2033018578 @default.
- W2022350381 cites W2037700159 @default.
- W2022350381 cites W2042688553 @default.
- W2022350381 cites W2043789360 @default.
- W2022350381 cites W2044450599 @default.
- W2022350381 cites W2046647523 @default.
- W2022350381 cites W2051275330 @default.
- W2022350381 cites W2052465323 @default.
- W2022350381 cites W2053737482 @default.
- W2022350381 cites W2054346362 @default.
- W2022350381 cites W2058547686 @default.
- W2022350381 cites W2062066026 @default.
- W2022350381 cites W2065369595 @default.
- W2022350381 cites W2074549126 @default.
- W2022350381 cites W2075204453 @default.
- W2022350381 cites W2077931981 @default.
- W2022350381 cites W2078296963 @default.
- W2022350381 cites W2080025752 @default.
- W2022350381 cites W2085677397 @default.
- W2022350381 cites W2094050936 @default.
- W2022350381 cites W2094489162 @default.
- W2022350381 cites W2103436852 @default.
- W2022350381 cites W2110429974 @default.
- W2022350381 cites W2130077676 @default.
- W2022350381 cites W2144487258 @default.
- W2022350381 cites W2152788816 @default.
- W2022350381 cites W2171457295 @default.
- W2022350381 cites W2949075122 @default.
- W2022350381 cites W3123953688 @default.
- W2022350381 cites W4248713785 @default.
- W2022350381 cites W4251678037 @default.
- W2022350381 doi "https://doi.org/10.1103/physrevb.73.014115" @default.
- W2022350381 hasPublicationYear "2006" @default.
- W2022350381 type Work @default.
- W2022350381 sameAs 2022350381 @default.
- W2022350381 citedByCount "269" @default.
- W2022350381 countsByYear W20223503812012 @default.
- W2022350381 countsByYear W20223503812013 @default.
- W2022350381 countsByYear W20223503812014 @default.
- W2022350381 countsByYear W20223503812015 @default.
- W2022350381 countsByYear W20223503812016 @default.
- W2022350381 countsByYear W20223503812017 @default.
- W2022350381 countsByYear W20223503812018 @default.
- W2022350381 countsByYear W20223503812019 @default.
- W2022350381 countsByYear W20223503812020 @default.
- W2022350381 countsByYear W20223503812021 @default.
- W2022350381 countsByYear W20223503812022 @default.
- W2022350381 countsByYear W20223503812023 @default.
- W2022350381 crossrefType "journal-article" @default.