Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022353906> ?p ?o ?g. }
- W2022353906 endingPage "1861" @default.
- W2022353906 startingPage "1852" @default.
- W2022353906 abstract "Current surgical techniques for osteochondral injuries in young active patients are inadequate clinically. Novel strategies in tissue engineering are continuously explored in this area. Despite numerous animal studies that have shown encouraging results, very few large-scale clinical trials have been done to address this area of interest. To facilitate the eventual translation from rabbit to human subjects, we have performed a study using bone marrow-derived mesenchymal stem cell (BMSC)–oligo[poly(ethylene glycol) fumarate] (OPF) hydrogel scaffold in a porcine model. Our objective was to analyze the morphology of BMSCs seeded into rehydrated freeze-dried OPF hydrogel and in vivo gross morphological and histological outcome of defects implanted with the BMSCs-OPF scaffold in a porcine model. The analyses were based on magnified histologic sections for different types of cartilage repair tissues, the outcome of the subchondral bone, scaffold, and statistical assessment of neotissue-filling percentage, cartilage phenotype, and Wakitani scores. The morphology of the BMSCs seeded into the rehydrated freeze-dried OPF scaffold was observed 24 h after cell seeding, through the phase-contrast microscope. The three-dimensional and cross-sectional structure of the fabrication was analyzed through confocal microscopy and histological methods, respectively. The BMSCs remained viable and were condensed into many pellet-like cell masses with a diameter ranging from 28.5 to 298.4 (113.5±47.9) μm in the OPF scaffold. In vivo osteochondral defect repair was tested in 12 defects created in six 8-month-old Prestige World Genetics micropigs. The implantation of scaffold alone was used for control. Gross morphological, histological, and statistical analyses were performed at 4 months postoperatively. The scaffold–MSC treatment led to 99% defect filling, with 84% hyaline-like cartilage at 4 months, which was significantly (p<0.0001) more than the 54% neotissue filling and 39% hyaline-like cartilage obtained in the scaffold-only group. The implantation of BMSCs in freeze-dried OPF hydrogel scaffold, which created a conducive environment for cell infiltration and clustering, could fully repair chondral defects with hyaline-like cartilage. This protocol provides a clinically feasible procedure for osteochondral defect treatment." @default.
- W2022353906 created "2016-06-24" @default.
- W2022353906 creator A5006285787 @default.
- W2022353906 creator A5009014905 @default.
- W2022353906 creator A5033899093 @default.
- W2022353906 creator A5041559654 @default.
- W2022353906 creator A5054426924 @default.
- W2022353906 creator A5059620644 @default.
- W2022353906 creator A5070129855 @default.
- W2022353906 creator A5084240749 @default.
- W2022353906 creator A5090587230 @default.
- W2022353906 date "2013-08-01" @default.
- W2022353906 modified "2023-10-18" @default.
- W2022353906 title "Repair of Osteochondral Defects with Rehydrated Freeze-Dried Oligo[Poly(Ethylene Glycol) Fumarate] Hydrogels Seeded with Bone Marrow Mesenchymal Stem Cells in a Porcine Model" @default.
- W2022353906 cites W110278398 @default.
- W2022353906 cites W1522229466 @default.
- W2022353906 cites W1601459771 @default.
- W2022353906 cites W1968516916 @default.
- W2022353906 cites W1983262993 @default.
- W2022353906 cites W1984182610 @default.
- W2022353906 cites W1984213215 @default.
- W2022353906 cites W1988592246 @default.
- W2022353906 cites W1999014699 @default.
- W2022353906 cites W2004711387 @default.
- W2022353906 cites W2009589232 @default.
- W2022353906 cites W2013344742 @default.
- W2022353906 cites W2024890091 @default.
- W2022353906 cites W2033889139 @default.
- W2022353906 cites W2037927124 @default.
- W2022353906 cites W2039235941 @default.
- W2022353906 cites W2042277388 @default.
- W2022353906 cites W2047665535 @default.
- W2022353906 cites W2047668077 @default.
- W2022353906 cites W2050911192 @default.
- W2022353906 cites W2053016699 @default.
- W2022353906 cites W2057315313 @default.
- W2022353906 cites W2062253021 @default.
- W2022353906 cites W2062279390 @default.
- W2022353906 cites W2063716706 @default.
- W2022353906 cites W2068826965 @default.
- W2022353906 cites W2069458082 @default.
- W2022353906 cites W2069937597 @default.
- W2022353906 cites W2076355487 @default.
- W2022353906 cites W2083999930 @default.
- W2022353906 cites W2085163273 @default.
- W2022353906 cites W2088031136 @default.
- W2022353906 cites W2088251424 @default.
- W2022353906 cites W2097627023 @default.
- W2022353906 cites W2099606884 @default.
- W2022353906 cites W2103589970 @default.
- W2022353906 cites W2108725095 @default.
- W2022353906 cites W2112713571 @default.
- W2022353906 cites W2113733895 @default.
- W2022353906 cites W2119145361 @default.
- W2022353906 cites W2129829065 @default.
- W2022353906 cites W2130073732 @default.
- W2022353906 cites W2131597955 @default.
- W2022353906 cites W2133096089 @default.
- W2022353906 cites W2139512488 @default.
- W2022353906 cites W2151238232 @default.
- W2022353906 cites W2168994101 @default.
- W2022353906 cites W2171311487 @default.
- W2022353906 cites W2172069215 @default.
- W2022353906 cites W2177167308 @default.
- W2022353906 cites W2223297936 @default.
- W2022353906 cites W2281256922 @default.
- W2022353906 doi "https://doi.org/10.1089/ten.tea.2012.0621" @default.
- W2022353906 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23517496" @default.
- W2022353906 hasPublicationYear "2013" @default.
- W2022353906 type Work @default.
- W2022353906 sameAs 2022353906 @default.
- W2022353906 citedByCount "42" @default.
- W2022353906 countsByYear W20223539062013 @default.
- W2022353906 countsByYear W20223539062014 @default.
- W2022353906 countsByYear W20223539062015 @default.
- W2022353906 countsByYear W20223539062016 @default.
- W2022353906 countsByYear W20223539062017 @default.
- W2022353906 countsByYear W20223539062018 @default.
- W2022353906 countsByYear W20223539062020 @default.
- W2022353906 countsByYear W20223539062021 @default.
- W2022353906 countsByYear W20223539062022 @default.
- W2022353906 countsByYear W20223539062023 @default.
- W2022353906 crossrefType "journal-article" @default.
- W2022353906 hasAuthorship W2022353906A5006285787 @default.
- W2022353906 hasAuthorship W2022353906A5009014905 @default.
- W2022353906 hasAuthorship W2022353906A5033899093 @default.
- W2022353906 hasAuthorship W2022353906A5041559654 @default.
- W2022353906 hasAuthorship W2022353906A5054426924 @default.
- W2022353906 hasAuthorship W2022353906A5059620644 @default.
- W2022353906 hasAuthorship W2022353906A5070129855 @default.
- W2022353906 hasAuthorship W2022353906A5084240749 @default.
- W2022353906 hasAuthorship W2022353906A5090587230 @default.
- W2022353906 hasBestOaLocation W20223539062 @default.
- W2022353906 hasConcept C105702510 @default.
- W2022353906 hasConcept C108586683 @default.
- W2022353906 hasConcept C136229726 @default.
- W2022353906 hasConcept C142724271 @default.
- W2022353906 hasConcept C150903083 @default.