Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022353957> ?p ?o ?g. }
- W2022353957 endingPage "11" @default.
- W2022353957 startingPage "1" @default.
- W2022353957 abstract "Rough sets are efficient for attribute reduction and rule extraction in data mining. However, many important problems including attribute reduction in rough sets are NP-hard, therefore the algorithms to solve them are often greedy. Matroids, generalized from linear independence in vector spaces, provide well-established platforms for greedy algorithm design. In this paper, we use graph and matrix approaches to study rough sets through matroids. First, we construct an isomorphism from equivalence relations to 2-circuit matroids, and then propose graph representations of lower and upper approximations through the graphic matroid. We also study graph representations of lower and upper approximations by that of the dual of the matroid. Second, in light of the fact that the relational matrix is a representable matrix of the matroid induced by an equivalence relation, matrix representations of lower and upper approximations are obtained with the representable matrix of the matroid. In a word, borrowing from matroids, this work presents two interesting views, graph and matrix ones, to investigate rough sets." @default.
- W2022353957 created "2016-06-24" @default.
- W2022353957 creator A5002405830 @default.
- W2022353957 creator A5014920935 @default.
- W2022353957 creator A5018381716 @default.
- W2022353957 creator A5078911343 @default.
- W2022353957 date "2014-12-01" @default.
- W2022353957 modified "2023-10-13" @default.
- W2022353957 title "Graph and matrix approaches to rough sets through matroids" @default.
- W2022353957 cites W1485091391 @default.
- W2022353957 cites W1517636450 @default.
- W2022353957 cites W1964508465 @default.
- W2022353957 cites W1965927354 @default.
- W2022353957 cites W1983426508 @default.
- W2022353957 cites W1988907639 @default.
- W2022353957 cites W1991528957 @default.
- W2022353957 cites W1994425726 @default.
- W2022353957 cites W2002115460 @default.
- W2022353957 cites W2007247975 @default.
- W2022353957 cites W2007262119 @default.
- W2022353957 cites W2007686858 @default.
- W2022353957 cites W2015706222 @default.
- W2022353957 cites W2018786061 @default.
- W2022353957 cites W2020699441 @default.
- W2022353957 cites W2024638676 @default.
- W2022353957 cites W2026948650 @default.
- W2022353957 cites W2041182276 @default.
- W2022353957 cites W2043931780 @default.
- W2022353957 cites W2045260678 @default.
- W2022353957 cites W2053817600 @default.
- W2022353957 cites W2055428278 @default.
- W2022353957 cites W2075340829 @default.
- W2022353957 cites W2079229074 @default.
- W2022353957 cites W2079680557 @default.
- W2022353957 cites W2089879726 @default.
- W2022353957 cites W2097287674 @default.
- W2022353957 cites W2098562708 @default.
- W2022353957 cites W2111011053 @default.
- W2022353957 cites W2122937613 @default.
- W2022353957 cites W2123123669 @default.
- W2022353957 cites W2135596587 @default.
- W2022353957 cites W2155041554 @default.
- W2022353957 cites W2157797249 @default.
- W2022353957 cites W2158633287 @default.
- W2022353957 cites W2782385204 @default.
- W2022353957 cites W4255833381 @default.
- W2022353957 doi "https://doi.org/10.1016/j.ins.2014.07.023" @default.
- W2022353957 hasPublicationYear "2014" @default.
- W2022353957 type Work @default.
- W2022353957 sameAs 2022353957 @default.
- W2022353957 citedByCount "14" @default.
- W2022353957 countsByYear W20223539572015 @default.
- W2022353957 countsByYear W20223539572016 @default.
- W2022353957 countsByYear W20223539572017 @default.
- W2022353957 countsByYear W20223539572018 @default.
- W2022353957 countsByYear W20223539572020 @default.
- W2022353957 countsByYear W20223539572021 @default.
- W2022353957 countsByYear W20223539572022 @default.
- W2022353957 countsByYear W20223539572023 @default.
- W2022353957 crossrefType "journal-article" @default.
- W2022353957 hasAuthorship W2022353957A5002405830 @default.
- W2022353957 hasAuthorship W2022353957A5014920935 @default.
- W2022353957 hasAuthorship W2022353957A5018381716 @default.
- W2022353957 hasAuthorship W2022353957A5078911343 @default.
- W2022353957 hasConcept C106286213 @default.
- W2022353957 hasConcept C106487976 @default.
- W2022353957 hasConcept C111012933 @default.
- W2022353957 hasConcept C111034964 @default.
- W2022353957 hasConcept C114614502 @default.
- W2022353957 hasConcept C118615104 @default.
- W2022353957 hasConcept C124101348 @default.
- W2022353957 hasConcept C124344645 @default.
- W2022353957 hasConcept C132525143 @default.
- W2022353957 hasConcept C156103551 @default.
- W2022353957 hasConcept C159985019 @default.
- W2022353957 hasConcept C169827030 @default.
- W2022353957 hasConcept C178621168 @default.
- W2022353957 hasConcept C192562407 @default.
- W2022353957 hasConcept C203776342 @default.
- W2022353957 hasConcept C22425182 @default.
- W2022353957 hasConcept C33923547 @default.
- W2022353957 hasConcept C41008148 @default.
- W2022353957 hasConcept C61665672 @default.
- W2022353957 hasConceptScore W2022353957C106286213 @default.
- W2022353957 hasConceptScore W2022353957C106487976 @default.
- W2022353957 hasConceptScore W2022353957C111012933 @default.
- W2022353957 hasConceptScore W2022353957C111034964 @default.
- W2022353957 hasConceptScore W2022353957C114614502 @default.
- W2022353957 hasConceptScore W2022353957C118615104 @default.
- W2022353957 hasConceptScore W2022353957C124101348 @default.
- W2022353957 hasConceptScore W2022353957C124344645 @default.
- W2022353957 hasConceptScore W2022353957C132525143 @default.
- W2022353957 hasConceptScore W2022353957C156103551 @default.
- W2022353957 hasConceptScore W2022353957C159985019 @default.
- W2022353957 hasConceptScore W2022353957C169827030 @default.
- W2022353957 hasConceptScore W2022353957C178621168 @default.
- W2022353957 hasConceptScore W2022353957C192562407 @default.
- W2022353957 hasConceptScore W2022353957C203776342 @default.