Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022354167> ?p ?o ?g. }
- W2022354167 endingPage "1788" @default.
- W2022354167 startingPage "1753" @default.
- W2022354167 abstract "Scale-invariant (flat) fluctuation spectra are the most natural outcomes of inflation. Nonetheless current large-scale-structure observations seem to indicate more fluctuation power on large scales than flat spectra give. We consider a wide variety of models based on the chaotic inflation paradigm and sketch the effects that varying the expansion rate, structure of the potential surface, and the curvature coupling constants have on the quantum fluctuation spectra. We calculate in detail the quantum generation of fluctuation spectra by numerically solving the linearized perturbation equations for multiple scalar fields, the metric, and the radiation into which the scalars dissipate, following the evolution from inside the horizon through reheating.We conclude that (1) useful extended nonflat power laws are very difficult to realize in inflation, (2) double inflation leading to a mountain leveling off at a high-amplitude plateau at long wavelengths is generic, but to tune the cliff rising up to the plateau to lie in an interesting wavelength range, a special choice of initial conditions and/or scalar field potentials is required, and (3) small mountains (moguls) on the potential surface lead to mountains of extra power in the fluctuations added on top of an underlying flat spectrum. For quadratic and quartic couplings, the mountain fluctuations may obey Gaussian statistics but the spectral form will be very sensitive to initial conditions as well as potential parameters; non-Gaussian mountain fluctuations which depend upon potential parameters but not on initial field conditions will be the more likely outcome. However, adding cubic couplings can give mountains obeying Gaussian statistics independently of initial conditions.Since observations only probe a narrow patch of the potential surface, it is possible that it is littered with moguls, leading to arbitrarily complex ``mountain range'' spectra that can only be determined phenomenologically. We also construct an inflation model which houses the chaotic inflation picture within the grand unified theory (GUT) framework. The standard chaotic picture requires an unnaturally flat scalar field potential, ensuremath{lambda}ensuremath{approxeq}5ifmmodetimeselsetexttimesfi{}${10}^{mathrm{ensuremath{-}}14}$, and a strong curvature coupling parameter bound, ensuremath{xi}<0.002. By allowing the Higgs field to be strongly coupled to gravity through a large negative curvature coupling strength, ensuremath{xi}ensuremath{sim}${mathrm{ensuremath{-}}10}^{4}$, so the Planck mass depends on the GUT Higgs field, the Higgs field can be strongly coupled to matter fields [with ensuremath{lambda}ensuremath{sim}(ensuremath{xi}${/10}^{5}$${)}^{2}$]. This leads to both a flat Zeldovich spectrum of the ``observed'' amplitude and a high reheating temperature (ensuremath{sim}${10}^{15}$ GeV), unlike the ensuremath{lambda}ensuremath{sim}${10}^{mathrm{ensuremath{-}}13}$ standard case. The large -ensuremath{xi} would be related to the ratio of the Planck scale to a typical GUT scale. Although a single dynamically important Higgs multiplet gives flat spectra, a richer Higgs sector could lead to broken scale invariance." @default.
- W2022354167 created "2016-06-24" @default.
- W2022354167 creator A5011882675 @default.
- W2022354167 creator A5024315168 @default.
- W2022354167 creator A5032242568 @default.
- W2022354167 date "1989-09-15" @default.
- W2022354167 modified "2023-10-10" @default.
- W2022354167 title "Designing density fluctuation spectra in inflation" @default.
- W2022354167 cites W1967787770 @default.
- W2022354167 cites W1976039715 @default.
- W2022354167 cites W1981837902 @default.
- W2022354167 cites W1986669506 @default.
- W2022354167 cites W1989972931 @default.
- W2022354167 cites W1992204683 @default.
- W2022354167 cites W1998614690 @default.
- W2022354167 cites W2002313202 @default.
- W2022354167 cites W2005276626 @default.
- W2022354167 cites W2005360586 @default.
- W2022354167 cites W2013661886 @default.
- W2022354167 cites W2014197570 @default.
- W2022354167 cites W2014796609 @default.
- W2022354167 cites W2017483000 @default.
- W2022354167 cites W2019414364 @default.
- W2022354167 cites W2020878177 @default.
- W2022354167 cites W2021573208 @default.
- W2022354167 cites W2021870751 @default.
- W2022354167 cites W2029175773 @default.
- W2022354167 cites W2032469582 @default.
- W2022354167 cites W2037579089 @default.
- W2022354167 cites W2048017486 @default.
- W2022354167 cites W2049296324 @default.
- W2022354167 cites W2049992556 @default.
- W2022354167 cites W2051694884 @default.
- W2022354167 cites W2054857516 @default.
- W2022354167 cites W2055148549 @default.
- W2022354167 cites W2055233368 @default.
- W2022354167 cites W2059175117 @default.
- W2022354167 cites W2060112160 @default.
- W2022354167 cites W2066274047 @default.
- W2022354167 cites W2067178603 @default.
- W2022354167 cites W2072646999 @default.
- W2022354167 cites W2080328631 @default.
- W2022354167 cites W2080410889 @default.
- W2022354167 cites W2082825784 @default.
- W2022354167 cites W2091432874 @default.
- W2022354167 cites W2092554079 @default.
- W2022354167 cites W2134990923 @default.
- W2022354167 cites W2147762346 @default.
- W2022354167 cites W2169912865 @default.
- W2022354167 cites W2173431099 @default.
- W2022354167 cites W2173760929 @default.
- W2022354167 cites W3093381660 @default.
- W2022354167 cites W4234464502 @default.
- W2022354167 cites W4253351141 @default.
- W2022354167 cites W4256093087 @default.
- W2022354167 doi "https://doi.org/10.1103/physrevd.40.1753" @default.
- W2022354167 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10012007" @default.
- W2022354167 hasPublicationYear "1989" @default.
- W2022354167 type Work @default.
- W2022354167 sameAs 2022354167 @default.
- W2022354167 citedByCount "683" @default.
- W2022354167 countsByYear W20223541672012 @default.
- W2022354167 countsByYear W20223541672013 @default.
- W2022354167 countsByYear W20223541672014 @default.
- W2022354167 countsByYear W20223541672015 @default.
- W2022354167 countsByYear W20223541672016 @default.
- W2022354167 countsByYear W20223541672017 @default.
- W2022354167 countsByYear W20223541672018 @default.
- W2022354167 countsByYear W20223541672019 @default.
- W2022354167 countsByYear W20223541672020 @default.
- W2022354167 countsByYear W20223541672021 @default.
- W2022354167 countsByYear W20223541672022 @default.
- W2022354167 countsByYear W20223541672023 @default.
- W2022354167 crossrefType "journal-article" @default.
- W2022354167 hasAuthorship W2022354167A5011882675 @default.
- W2022354167 hasAuthorship W2022354167A5024315168 @default.
- W2022354167 hasAuthorship W2022354167A5032242568 @default.
- W2022354167 hasConcept C105795698 @default.
- W2022354167 hasConcept C121332964 @default.
- W2022354167 hasConcept C121864883 @default.
- W2022354167 hasConcept C130432447 @default.
- W2022354167 hasConcept C163716315 @default.
- W2022354167 hasConcept C164008634 @default.
- W2022354167 hasConcept C168110828 @default.
- W2022354167 hasConcept C173153575 @default.
- W2022354167 hasConcept C180205008 @default.
- W2022354167 hasConcept C195065555 @default.
- W2022354167 hasConcept C200941418 @default.
- W2022354167 hasConcept C202444582 @default.
- W2022354167 hasConcept C207297109 @default.
- W2022354167 hasConcept C2524010 @default.
- W2022354167 hasConcept C33923547 @default.
- W2022354167 hasConcept C4839761 @default.
- W2022354167 hasConcept C57691317 @default.
- W2022354167 hasConcept C62520636 @default.
- W2022354167 hasConcept C85725439 @default.
- W2022354167 hasConceptScore W2022354167C105795698 @default.
- W2022354167 hasConceptScore W2022354167C121332964 @default.