Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022356518> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W2022356518 endingPage "471" @default.
- W2022356518 startingPage "471" @default.
- W2022356518 abstract "Abstract This paper proposes a neural network solution to the classical signal processing problem of detection of a synchronous recurrent transient signal in noise. If a signal exists, it is assumed to be one of M known signals which may sometimes occur (probabilistically) in successive intervals. Several neural network configurations are applied to this problem and compared with each other and with the optimum adaptive sequential detector. A novel efficient neural network detector is proposed using an XOR - Tree configuration with learning. Tests with synthetic and real noise, show the excellent performance of this approach as compared to the optimum adaptive detector and to other neural network techniques. With real (non-white) noise obtained from sonar data, the XOR - Tree network widely outperforms the likelihood ratio detector. We also discuss the learning time complexity of the XOR - Tree network and compare it to that of standard three layer network architectures." @default.
- W2022356518 created "2016-06-24" @default.
- W2022356518 creator A5010056143 @default.
- W2022356518 creator A5074413858 @default.
- W2022356518 creator A5088449726 @default.
- W2022356518 date "1999-03-01" @default.
- W2022356518 modified "2023-09-25" @default.
- W2022356518 title "Learning neural networks for detection and classification of synchronous recurrent transient signals" @default.
- W2022356518 doi "https://doi.org/10.1016/s0920-5489(99)91037-1" @default.
- W2022356518 hasPublicationYear "1999" @default.
- W2022356518 type Work @default.
- W2022356518 sameAs 2022356518 @default.
- W2022356518 citedByCount "0" @default.
- W2022356518 crossrefType "journal-article" @default.
- W2022356518 hasAuthorship W2022356518A5010056143 @default.
- W2022356518 hasAuthorship W2022356518A5074413858 @default.
- W2022356518 hasAuthorship W2022356518A5088449726 @default.
- W2022356518 hasConcept C111919701 @default.
- W2022356518 hasConcept C153180895 @default.
- W2022356518 hasConcept C154945302 @default.
- W2022356518 hasConcept C2780799671 @default.
- W2022356518 hasConcept C41008148 @default.
- W2022356518 hasConcept C50644808 @default.
- W2022356518 hasConceptScore W2022356518C111919701 @default.
- W2022356518 hasConceptScore W2022356518C153180895 @default.
- W2022356518 hasConceptScore W2022356518C154945302 @default.
- W2022356518 hasConceptScore W2022356518C2780799671 @default.
- W2022356518 hasConceptScore W2022356518C41008148 @default.
- W2022356518 hasConceptScore W2022356518C50644808 @default.
- W2022356518 hasIssue "6-7" @default.
- W2022356518 hasLocation W20223565181 @default.
- W2022356518 hasOpenAccess W2022356518 @default.
- W2022356518 hasPrimaryLocation W20223565181 @default.
- W2022356518 hasRelatedWork W1978450727 @default.
- W2022356518 hasRelatedWork W2033914206 @default.
- W2022356518 hasRelatedWork W2146076056 @default.
- W2022356518 hasRelatedWork W2163831990 @default.
- W2022356518 hasRelatedWork W2378160586 @default.
- W2022356518 hasRelatedWork W2386387936 @default.
- W2022356518 hasRelatedWork W2394285654 @default.
- W2022356518 hasRelatedWork W3003836766 @default.
- W2022356518 hasRelatedWork W3107474891 @default.
- W2022356518 hasRelatedWork W4244943737 @default.
- W2022356518 hasVolume "20" @default.
- W2022356518 isParatext "false" @default.
- W2022356518 isRetracted "false" @default.
- W2022356518 magId "2022356518" @default.
- W2022356518 workType "article" @default.