Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022356557> ?p ?o ?g. }
- W2022356557 endingPage "2016" @default.
- W2022356557 startingPage "2005" @default.
- W2022356557 abstract "Nanoscale clusters of bulk materials, also known as quantum dots (QDs), exhibit both molecular and bulk properties. Unlike either bulk or molecular materials, QD properties can be modified continuously by changing QD shape and size. However, the chemical and physical properties of molecular and bulk materials often contradict each other, which can lead to differing viewpoints about the behavior of QDs. For example, the molecular view suggests strong electron−hole and charge−phonon interactions, as well as slow energy relaxation due to mismatch between electronic energy gaps and phonon frequencies. In contrast, the bulk view advocates that the kinetic energy of quantum confinement is greater than electron−hole interactions, that charge−phonon coupling is weak, and that the relaxation through quasi-continuous bands is rapid. By synthesizing the bulk and molecular viewpoints, this Account clarifies the controversies and provides a unified atomistic picture of the nature and dynamics of photoexcited states in semiconductor QDs. Based on the state-of-the-art ab initio approaches in both the energy and time domains, the Account presents a comprehensive discussion of the dynamical processes in QDs, ranging from the initial photon absorption to the final emission. The atomistic description of QDs complements phenomenological models, provides important details, and creates new scientific paradigms. The ab initio approaches are particularly useful for studying geometric and electronic structure of QDs because they treat bulk, surface, ligands, and defects on equal footing and incorporate electronic correlation effects. Nonadiabatic molecular dynamics simulations most closely mimic the complex coupled evolutions of charges, phonons, and spins as they occur in nature. The simulations show that the underlying atomic structure, thermal fluctuations, and surface effects lift electronic state degeneracies predicted by phenomenological models and that excitonic electron−hole interactions are strong in small QDs. Stoichiometric surfaces self-heal. However, only molecular ligands and core/shell designs can eliminate traps associated with dangling chemical bonds, missing atoms, and other defects. Ligands create charge traps and provide high-frequency phonons. The phonon-induced dephasing of electronic excitations is ultrafast, ranging from tens to hundreds of femtoseconds. The dependence of the relaxation on the excitation energy and the density of states clarify the controversies regarding the phonon bottleneck in the photoexcited electron relaxation, and the participation of low-frequency phonons explains the temperature dependence of the relaxation rate. We rationalize the ultrafast generation of multiple excitons without the phononbottleneck by strong Coulomb interactions between the charge carriers. The QD charging and defects explain the large variation in the experimental data on multiple exciton generation. The issues raised here with the electronic states and semiconductor QDs are similar to those found with the spin states and metallic QDs. Assemblies of QDs with other materials, such as organic chromophores and inorganic semiconductors, will present new sets of questions. Time-domain ab initio approaches will allow scientists to address these challenges directly in the near future." @default.
- W2022356557 created "2016-06-24" @default.
- W2022356557 creator A5061633372 @default.
- W2022356557 date "2009-11-04" @default.
- W2022356557 modified "2023-10-18" @default.
- W2022356557 title "Photoinduced Dynamics in Semiconductor Quantum Dots: Insights from Time-Domain <i>ab Initio</i> Studies" @default.
- W2022356557 cites W1497033841 @default.
- W2022356557 cites W1983859069 @default.
- W2022356557 cites W1987763890 @default.
- W2022356557 cites W1988370345 @default.
- W2022356557 cites W1998483116 @default.
- W2022356557 cites W2000761969 @default.
- W2022356557 cites W2004059309 @default.
- W2022356557 cites W2006146413 @default.
- W2022356557 cites W2006592554 @default.
- W2022356557 cites W2007019124 @default.
- W2022356557 cites W2007684864 @default.
- W2022356557 cites W2009873025 @default.
- W2022356557 cites W2012553478 @default.
- W2022356557 cites W2013001823 @default.
- W2022356557 cites W2018771308 @default.
- W2022356557 cites W2021169914 @default.
- W2022356557 cites W2021179200 @default.
- W2022356557 cites W2022872342 @default.
- W2022356557 cites W2023152529 @default.
- W2022356557 cites W2023528477 @default.
- W2022356557 cites W2025400699 @default.
- W2022356557 cites W2029139554 @default.
- W2022356557 cites W2031098039 @default.
- W2022356557 cites W2031423308 @default.
- W2022356557 cites W2031808719 @default.
- W2022356557 cites W2032706441 @default.
- W2022356557 cites W2035126663 @default.
- W2022356557 cites W2036798943 @default.
- W2022356557 cites W2044161294 @default.
- W2022356557 cites W2045913892 @default.
- W2022356557 cites W2047251061 @default.
- W2022356557 cites W2047677481 @default.
- W2022356557 cites W2049397384 @default.
- W2022356557 cites W2049752516 @default.
- W2022356557 cites W2055218421 @default.
- W2022356557 cites W2061240782 @default.
- W2022356557 cites W2064928939 @default.
- W2022356557 cites W2084513681 @default.
- W2022356557 cites W2087902811 @default.
- W2022356557 cites W2089772503 @default.
- W2022356557 cites W2095418964 @default.
- W2022356557 cites W2107980006 @default.
- W2022356557 cites W2121296270 @default.
- W2022356557 cites W2151706384 @default.
- W2022356557 cites W2257036371 @default.
- W2022356557 cites W2330743120 @default.
- W2022356557 cites W2595253790 @default.
- W2022356557 cites W3100132889 @default.
- W2022356557 doi "https://doi.org/10.1021/ar900157s" @default.
- W2022356557 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19888715" @default.
- W2022356557 hasPublicationYear "2009" @default.
- W2022356557 type Work @default.
- W2022356557 sameAs 2022356557 @default.
- W2022356557 citedByCount "118" @default.
- W2022356557 countsByYear W20223565572012 @default.
- W2022356557 countsByYear W20223565572013 @default.
- W2022356557 countsByYear W20223565572014 @default.
- W2022356557 countsByYear W20223565572015 @default.
- W2022356557 countsByYear W20223565572016 @default.
- W2022356557 countsByYear W20223565572017 @default.
- W2022356557 countsByYear W20223565572018 @default.
- W2022356557 countsByYear W20223565572019 @default.
- W2022356557 countsByYear W20223565572020 @default.
- W2022356557 countsByYear W20223565572021 @default.
- W2022356557 countsByYear W20223565572022 @default.
- W2022356557 countsByYear W20223565572023 @default.
- W2022356557 crossrefType "journal-article" @default.
- W2022356557 hasAuthorship W2022356557A5061633372 @default.
- W2022356557 hasConcept C121332964 @default.
- W2022356557 hasConcept C124657808 @default.
- W2022356557 hasConcept C15744967 @default.
- W2022356557 hasConcept C159467904 @default.
- W2022356557 hasConcept C171250308 @default.
- W2022356557 hasConcept C183971685 @default.
- W2022356557 hasConcept C185592680 @default.
- W2022356557 hasConcept C192562407 @default.
- W2022356557 hasConcept C24169881 @default.
- W2022356557 hasConcept C26873012 @default.
- W2022356557 hasConcept C2776029896 @default.
- W2022356557 hasConcept C2781442258 @default.
- W2022356557 hasConcept C32909587 @default.
- W2022356557 hasConcept C59593255 @default.
- W2022356557 hasConcept C62520636 @default.
- W2022356557 hasConcept C77805123 @default.
- W2022356557 hasConcept C86025842 @default.
- W2022356557 hasConceptScore W2022356557C121332964 @default.
- W2022356557 hasConceptScore W2022356557C124657808 @default.
- W2022356557 hasConceptScore W2022356557C15744967 @default.
- W2022356557 hasConceptScore W2022356557C159467904 @default.
- W2022356557 hasConceptScore W2022356557C171250308 @default.
- W2022356557 hasConceptScore W2022356557C183971685 @default.
- W2022356557 hasConceptScore W2022356557C185592680 @default.