Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022361797> ?p ?o ?g. }
- W2022361797 endingPage "283" @default.
- W2022361797 startingPage "259" @default.
- W2022361797 abstract "The method presented here is aimed to a direct fast setting of the parameters of a RBF network for function approximation. It is based on a hierarchical gridding of the input space; additional layers of Gaussians at lower scales are added where the residual error is higher. The number of the Gaussians of each layer and their variance are computed from considerations grounded in the linear filtering theory. The weight of each Gaussian is estimated through a maximum a posteriori estimate carried out locally on a sub-set of the data points. The method shows a high accuracy in the reconstruction, it can deal with non-evenly spaced data points and can be fully parallelizable. Results on the reconstruction of both synthetic and real data are presented and discussed." @default.
- W2022361797 created "2016-06-24" @default.
- W2022361797 creator A5001947622 @default.
- W2022361797 creator A5063632316 @default.
- W2022361797 date "1998-04-01" @default.
- W2022361797 modified "2023-09-25" @default.
- W2022361797 title "Hierarchical RBF networks and local parameters estimate" @default.
- W2022361797 cites W1964168965 @default.
- W2022361797 cites W1974170286 @default.
- W2022361797 cites W1979321500 @default.
- W2022361797 cites W1981025032 @default.
- W2022361797 cites W1996692737 @default.
- W2022361797 cites W1997066685 @default.
- W2022361797 cites W2006493416 @default.
- W2022361797 cites W2010150441 @default.
- W2022361797 cites W2023346816 @default.
- W2022361797 cites W2024060531 @default.
- W2022361797 cites W2041135776 @default.
- W2022361797 cites W2051688774 @default.
- W2022361797 cites W2052387497 @default.
- W2022361797 cites W2069669236 @default.
- W2022361797 cites W2086472796 @default.
- W2022361797 cites W2087629825 @default.
- W2022361797 cites W2113442785 @default.
- W2022361797 cites W2114865067 @default.
- W2022361797 cites W2123207935 @default.
- W2022361797 cites W2143787696 @default.
- W2022361797 cites W2150134853 @default.
- W2022361797 cites W2150535417 @default.
- W2022361797 cites W2150593711 @default.
- W2022361797 cites W2150884987 @default.
- W2022361797 cites W2155399784 @default.
- W2022361797 cites W2166322089 @default.
- W2022361797 cites W2171277043 @default.
- W2022361797 cites W2431566151 @default.
- W2022361797 cites W2475697477 @default.
- W2022361797 cites W4233845081 @default.
- W2022361797 doi "https://doi.org/10.1016/s0925-2312(97)00094-5" @default.
- W2022361797 hasPublicationYear "1998" @default.
- W2022361797 type Work @default.
- W2022361797 sameAs 2022361797 @default.
- W2022361797 citedByCount "50" @default.
- W2022361797 countsByYear W20223617972012 @default.
- W2022361797 countsByYear W20223617972013 @default.
- W2022361797 countsByYear W20223617972014 @default.
- W2022361797 countsByYear W20223617972015 @default.
- W2022361797 countsByYear W20223617972016 @default.
- W2022361797 countsByYear W20223617972017 @default.
- W2022361797 countsByYear W20223617972019 @default.
- W2022361797 countsByYear W20223617972020 @default.
- W2022361797 countsByYear W20223617972023 @default.
- W2022361797 crossrefType "journal-article" @default.
- W2022361797 hasAuthorship W2022361797A5001947622 @default.
- W2022361797 hasAuthorship W2022361797A5063632316 @default.
- W2022361797 hasConcept C111472728 @default.
- W2022361797 hasConcept C11413529 @default.
- W2022361797 hasConcept C121332964 @default.
- W2022361797 hasConcept C121955636 @default.
- W2022361797 hasConcept C138885662 @default.
- W2022361797 hasConcept C14036430 @default.
- W2022361797 hasConcept C144133560 @default.
- W2022361797 hasConcept C148047603 @default.
- W2022361797 hasConcept C153180895 @default.
- W2022361797 hasConcept C154945302 @default.
- W2022361797 hasConcept C155512373 @default.
- W2022361797 hasConcept C163716315 @default.
- W2022361797 hasConcept C177264268 @default.
- W2022361797 hasConcept C196083921 @default.
- W2022361797 hasConcept C199360897 @default.
- W2022361797 hasConcept C33923547 @default.
- W2022361797 hasConcept C41008148 @default.
- W2022361797 hasConcept C58489278 @default.
- W2022361797 hasConcept C62520636 @default.
- W2022361797 hasConcept C75553542 @default.
- W2022361797 hasConcept C78458016 @default.
- W2022361797 hasConcept C86803240 @default.
- W2022361797 hasConceptScore W2022361797C111472728 @default.
- W2022361797 hasConceptScore W2022361797C11413529 @default.
- W2022361797 hasConceptScore W2022361797C121332964 @default.
- W2022361797 hasConceptScore W2022361797C121955636 @default.
- W2022361797 hasConceptScore W2022361797C138885662 @default.
- W2022361797 hasConceptScore W2022361797C14036430 @default.
- W2022361797 hasConceptScore W2022361797C144133560 @default.
- W2022361797 hasConceptScore W2022361797C148047603 @default.
- W2022361797 hasConceptScore W2022361797C153180895 @default.
- W2022361797 hasConceptScore W2022361797C154945302 @default.
- W2022361797 hasConceptScore W2022361797C155512373 @default.
- W2022361797 hasConceptScore W2022361797C163716315 @default.
- W2022361797 hasConceptScore W2022361797C177264268 @default.
- W2022361797 hasConceptScore W2022361797C196083921 @default.
- W2022361797 hasConceptScore W2022361797C199360897 @default.
- W2022361797 hasConceptScore W2022361797C33923547 @default.
- W2022361797 hasConceptScore W2022361797C41008148 @default.
- W2022361797 hasConceptScore W2022361797C58489278 @default.
- W2022361797 hasConceptScore W2022361797C62520636 @default.
- W2022361797 hasConceptScore W2022361797C75553542 @default.
- W2022361797 hasConceptScore W2022361797C78458016 @default.
- W2022361797 hasConceptScore W2022361797C86803240 @default.