Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022365837> ?p ?o ?g. }
- W2022365837 endingPage "667" @default.
- W2022365837 startingPage "655" @default.
- W2022365837 abstract "An intelligent human-robot interaction (HRI) system with adjustable robot behavior is presented. The proposed HRI system assists the human operator to perform a given task with minimum workload demands and optimizes the overall human-robot system performance. Motivated by human factor studies, the presented control structure consists of two control loops. First, a robot-specific neuro-adaptive controller is designed in the inner loop to make the unknown nonlinear robot behave like a prescribed robot impedance model as perceived by a human operator. In contrast to existing neural network and adaptive impedance-based control methods, no information of the task performance or the prescribed robot impedance model parameters is required in the inner loop. Then, a task-specific outer-loop controller is designed to find the optimal parameters of the prescribed robot impedance model to adjust the robot's dynamics to the operator skills and minimize the tracking error. The outer loop includes the human operator, the robot, and the task performance details. The problem of finding the optimal parameters of the prescribed robot impedance model is transformed into a linear quadratic regulator (LQR) problem which minimizes the human effort and optimizes the closed-loop behavior of the HRI system for a given task. To obviate the requirement of the knowledge of the human model, integral reinforcement learning is used to solve the given LQR problem. Simulation results on an x-y table and a robot arm, and experimental implementation results on a PR2 robot confirm the suitability of the proposed method." @default.
- W2022365837 created "2016-06-24" @default.
- W2022365837 creator A5016137188 @default.
- W2022365837 creator A5019255848 @default.
- W2022365837 creator A5063118155 @default.
- W2022365837 creator A5089902968 @default.
- W2022365837 date "2016-03-01" @default.
- W2022365837 modified "2023-10-05" @default.
- W2022365837 title "Optimized Assistive Human–Robot Interaction Using Reinforcement Learning" @default.
- W2022365837 cites W1493190793 @default.
- W2022365837 cites W1509801191 @default.
- W2022365837 cites W1513689897 @default.
- W2022365837 cites W1967377907 @default.
- W2022365837 cites W1972243698 @default.
- W2022365837 cites W1976956127 @default.
- W2022365837 cites W1997048034 @default.
- W2022365837 cites W2001407475 @default.
- W2022365837 cites W2010152647 @default.
- W2022365837 cites W2016972634 @default.
- W2022365837 cites W2023200365 @default.
- W2022365837 cites W2024303516 @default.
- W2022365837 cites W2043536379 @default.
- W2022365837 cites W2043996251 @default.
- W2022365837 cites W2068923975 @default.
- W2022365837 cites W2078736691 @default.
- W2022365837 cites W2081514674 @default.
- W2022365837 cites W2085194340 @default.
- W2022365837 cites W2098993416 @default.
- W2022365837 cites W2109590511 @default.
- W2022365837 cites W2112265193 @default.
- W2022365837 cites W2114584581 @default.
- W2022365837 cites W2114968051 @default.
- W2022365837 cites W2115906629 @default.
- W2022365837 cites W2124338051 @default.
- W2022365837 cites W2126172323 @default.
- W2022365837 cites W2132773469 @default.
- W2022365837 cites W2134235175 @default.
- W2022365837 cites W2135414729 @default.
- W2022365837 cites W2141636931 @default.
- W2022365837 cites W2148439597 @default.
- W2022365837 cites W2148459629 @default.
- W2022365837 cites W2149650741 @default.
- W2022365837 cites W2152161277 @default.
- W2022365837 cites W2153929968 @default.
- W2022365837 cites W2160529682 @default.
- W2022365837 cites W2169187067 @default.
- W2022365837 cites W2169513627 @default.
- W2022365837 cites W2171012501 @default.
- W2022365837 cites W2402376955 @default.
- W2022365837 cites W2406841746 @default.
- W2022365837 cites W2484646121 @default.
- W2022365837 cites W2487144912 @default.
- W2022365837 cites W4246923680 @default.
- W2022365837 doi "https://doi.org/10.1109/tcyb.2015.2412554" @default.
- W2022365837 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25823055" @default.
- W2022365837 hasPublicationYear "2016" @default.
- W2022365837 type Work @default.
- W2022365837 sameAs 2022365837 @default.
- W2022365837 citedByCount "138" @default.
- W2022365837 countsByYear W20223658372015 @default.
- W2022365837 countsByYear W20223658372016 @default.
- W2022365837 countsByYear W20223658372017 @default.
- W2022365837 countsByYear W20223658372018 @default.
- W2022365837 countsByYear W20223658372019 @default.
- W2022365837 countsByYear W20223658372020 @default.
- W2022365837 countsByYear W20223658372021 @default.
- W2022365837 countsByYear W20223658372022 @default.
- W2022365837 countsByYear W20223658372023 @default.
- W2022365837 crossrefType "journal-article" @default.
- W2022365837 hasAuthorship W2022365837A5016137188 @default.
- W2022365837 hasAuthorship W2022365837A5019255848 @default.
- W2022365837 hasAuthorship W2022365837A5063118155 @default.
- W2022365837 hasAuthorship W2022365837A5089902968 @default.
- W2022365837 hasConcept C127413603 @default.
- W2022365837 hasConcept C133731056 @default.
- W2022365837 hasConcept C154945302 @default.
- W2022365837 hasConcept C188888258 @default.
- W2022365837 hasConcept C19966478 @default.
- W2022365837 hasConcept C201995342 @default.
- W2022365837 hasConcept C203479927 @default.
- W2022365837 hasConcept C2775924081 @default.
- W2022365837 hasConcept C2780451532 @default.
- W2022365837 hasConcept C41008148 @default.
- W2022365837 hasConcept C44154836 @default.
- W2022365837 hasConcept C47446073 @default.
- W2022365837 hasConcept C58716799 @default.
- W2022365837 hasConcept C65401140 @default.
- W2022365837 hasConcept C6557445 @default.
- W2022365837 hasConcept C86803240 @default.
- W2022365837 hasConcept C90509273 @default.
- W2022365837 hasConcept C97541855 @default.
- W2022365837 hasConcept C98779006 @default.
- W2022365837 hasConceptScore W2022365837C127413603 @default.
- W2022365837 hasConceptScore W2022365837C133731056 @default.
- W2022365837 hasConceptScore W2022365837C154945302 @default.
- W2022365837 hasConceptScore W2022365837C188888258 @default.
- W2022365837 hasConceptScore W2022365837C19966478 @default.
- W2022365837 hasConceptScore W2022365837C201995342 @default.