Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022378977> ?p ?o ?g. }
- W2022378977 endingPage "273" @default.
- W2022378977 startingPage "239" @default.
- W2022378977 abstract "Ammonia liquor with very high concentrations of phenol and alkylated phenols is known to have leaked into the subsurface at a former coal carbonization plant in the UK, giving high concentrations of ammonium in the groundwater. In spite of this, no significant concentrations of phenols were found in the groundwater. The potential for biodegradation of the phenols in the sandstone aquifer at the site has been investigated in laboratory microcosms under aerobic (oxygen amended) and mixed nitrate and iron reducing (nitrate enriched and unamended) anaerobic conditions, at a range of concentrations (low: ∼5 mg l−1, high: ∼60 mg l−1, and very high: ∼600 mg l−1) and in the presence of other organic coal–tar compounds (mono- and polyaromatic hydrocarbons (BTEXs and PAHs) and heterocyclic compounds (NSOs)) and ammonia liquor. Sandstone cores and groundwater for the microcosms were collected from within the anaerobic ammonium plume at the field site. Fast and complete degradation of phenol, o- and p-cresol, 2,5- and 3,4-xylenol with no or very short initial lag-phases was observed under aerobic conditions at low concentrations. 2,6- and 3,5-Xylenol were degraded more slowly and 3,5-xylenol degradation was only just complete after about 1 year. The maximum rates of total phenols degradation in duplicate aerobic microcosms were 1.06 and 1.76 mg l−1 day−1. The degradation of phenols in nitrate enriched and unamended anaerobic microcosms was similar. Fast and complete biodegradation of phenol, cresols, 3,4-xylenol and 3,5-xylenol was observed after short lag-phases in the anaerobic microcosms. 2,5-xylenol was partially degraded after a longer lag-phase and 2,6-xylenol persisted throughout the 3 month long experiments. The maximum rates of total phenols degradation in duplicate nitrate enriched and unamended anaerobic microcosms were 0.30–0.38 and 0.29–0.31 mg l−1 day−1, respectively. The highest phenols concentrations in the anaerobic microcosms apparently required very long adaptation periods or inhibited biodegradation of the phenols. For the intermediate concentration level, degradation occurred after comparable lag-phases and at comparable rates to those observed at low concentration. However, after a while degradation of phenols suddenly decreased drastically and then stopped. Dilution by addition of anaerobic groundwater resulted in continued but slow degradation of phenols in unamended microcosms. The effect of other organic coal–tar compounds (BTEXs, PAHs, NSOs) on the degradation of the phenols under unamended conditions was limited to slightly longer lag-phases for some of the phenols. Other constituents of the ammonia liquor did not appear to significantly affect the degradation of the phenols. Fast and complete degradation of 2,3- and 2,4-xylenol was indicated. These experiments were continued for a longer period of time and revealed complete degradation of 2,5-xylenol and, after an approximately 6-month-long lag-phase partial degradation of 2,6-xylenol. The potential for natural attenuation of phenols from process effluents from coal carbonization under aerobic conditions and mixed nitrate and iron reducing conditions appears promising." @default.
- W2022378977 created "2016-06-24" @default.
- W2022378977 creator A5000014338 @default.
- W2022378977 creator A5069167247 @default.
- W2022378977 date "2000-08-01" @default.
- W2022378977 modified "2023-09-25" @default.
- W2022378977 title "Biodegradation of phenols in a sandstone aquifer under aerobic conditions and mixed nitrate and iron reducing conditions" @default.
- W2022378977 cites W1507013858 @default.
- W2022378977 cites W1510451285 @default.
- W2022378977 cites W1524658211 @default.
- W2022378977 cites W1535161867 @default.
- W2022378977 cites W1536274458 @default.
- W2022378977 cites W1609933329 @default.
- W2022378977 cites W1652697403 @default.
- W2022378977 cites W1744772192 @default.
- W2022378977 cites W1792580010 @default.
- W2022378977 cites W1811493116 @default.
- W2022378977 cites W1819633534 @default.
- W2022378977 cites W1857168416 @default.
- W2022378977 cites W1916510387 @default.
- W2022378977 cites W1943930105 @default.
- W2022378977 cites W1967205502 @default.
- W2022378977 cites W1969492382 @default.
- W2022378977 cites W1975380219 @default.
- W2022378977 cites W1977253447 @default.
- W2022378977 cites W1978205836 @default.
- W2022378977 cites W1979283000 @default.
- W2022378977 cites W1983307010 @default.
- W2022378977 cites W1993578329 @default.
- W2022378977 cites W1993662491 @default.
- W2022378977 cites W1996728721 @default.
- W2022378977 cites W1999473216 @default.
- W2022378977 cites W2001464501 @default.
- W2022378977 cites W2001999926 @default.
- W2022378977 cites W2005387755 @default.
- W2022378977 cites W2007962578 @default.
- W2022378977 cites W2012927413 @default.
- W2022378977 cites W2015684676 @default.
- W2022378977 cites W2020663474 @default.
- W2022378977 cites W2021390025 @default.
- W2022378977 cites W2021878820 @default.
- W2022378977 cites W2022378977 @default.
- W2022378977 cites W2028500255 @default.
- W2022378977 cites W2038477629 @default.
- W2022378977 cites W2039304381 @default.
- W2022378977 cites W2043349052 @default.
- W2022378977 cites W2045316098 @default.
- W2022378977 cites W2047176157 @default.
- W2022378977 cites W2048662154 @default.
- W2022378977 cites W2049372044 @default.
- W2022378977 cites W2051722279 @default.
- W2022378977 cites W2054480712 @default.
- W2022378977 cites W2056366050 @default.
- W2022378977 cites W2056976514 @default.
- W2022378977 cites W2057662687 @default.
- W2022378977 cites W2061986612 @default.
- W2022378977 cites W2064761450 @default.
- W2022378977 cites W2064761974 @default.
- W2022378977 cites W2076584254 @default.
- W2022378977 cites W2077445578 @default.
- W2022378977 cites W2077651763 @default.
- W2022378977 cites W2081914660 @default.
- W2022378977 cites W2089441056 @default.
- W2022378977 cites W2093662309 @default.
- W2022378977 cites W2102142752 @default.
- W2022378977 cites W2114712877 @default.
- W2022378977 cites W2134789887 @default.
- W2022378977 cites W2165381486 @default.
- W2022378977 cites W2174008283 @default.
- W2022378977 cites W2232162676 @default.
- W2022378977 cites W2526776703 @default.
- W2022378977 cites W4232573936 @default.
- W2022378977 doi "https://doi.org/10.1016/s0169-7722(00)00103-0" @default.
- W2022378977 hasPublicationYear "2000" @default.
- W2022378977 type Work @default.
- W2022378977 sameAs 2022378977 @default.
- W2022378977 citedByCount "62" @default.
- W2022378977 countsByYear W20223789772012 @default.
- W2022378977 countsByYear W20223789772013 @default.
- W2022378977 countsByYear W20223789772014 @default.
- W2022378977 countsByYear W20223789772015 @default.
- W2022378977 countsByYear W20223789772016 @default.
- W2022378977 countsByYear W20223789772017 @default.
- W2022378977 countsByYear W20223789772018 @default.
- W2022378977 countsByYear W20223789772020 @default.
- W2022378977 countsByYear W20223789772022 @default.
- W2022378977 crossrefType "journal-article" @default.
- W2022378977 hasAuthorship W2022378977A5000014338 @default.
- W2022378977 hasAuthorship W2022378977A5069167247 @default.
- W2022378977 hasConcept C107872376 @default.
- W2022378977 hasConcept C108970007 @default.
- W2022378977 hasConcept C157021035 @default.
- W2022378977 hasConcept C178790620 @default.
- W2022378977 hasConcept C185592680 @default.
- W2022378977 hasConcept C2776384668 @default.
- W2022378977 hasConcept C2777702071 @default.
- W2022378977 hasConcept C2777728882 @default.
- W2022378977 hasConcept C7012322 @default.