Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022381389> ?p ?o ?g. }
- W2022381389 endingPage "153" @default.
- W2022381389 startingPage "141" @default.
- W2022381389 abstract "This review explores the most appropriate methods of identifying population differences in physiological and anthropometric variables known to differ with body size and other confounding variables. We shall provide an overview of such problems from a historical point of view. We shall then give some guidelines as to the choice of body-size covariates as well as other confounding variables, and show how these might be incorporated into the model, depending on the physiological dependent variable and the nature of the population being studied. We shall also recommend appropriate goodness-of-fit statistics that will enable researchers to confirm the most appropriate choice of model, including, for example, how to compare proportional allometric models with the equivalent linear or additive polynomial models. We shall also discuss alternative body-size scaling variables (height, fat-free mass, body surface area, and projected area of skeletal bone), and whether empirical vs. theoretical scaling methodologies should be reported. We shall offer some cautionary advice (limitations) when interpreting the parameters obtained when fitting proportional power function or allometric models, due to the fact that human physiques are not geometrically similar to each other. In conclusion, a variety of different models will be identified to describe physiological and anthropometric variables known to vary with body size and other confounding variables. These include simple ratio standards (e.g., per body mass ratios), linear and additive polynomial models, and proportional allometric or power function models. Proportional allometric models are shown to be superior to either simple ratio standards or linear and additive polynomial models for a variety of different reasons. These include: 1) providing biologically interpretable models that yield sensible estimates within and beyond the range of data; and 2) providing a superior fit based on the Akaike information criterion (AIC), Bayes information criterion (BIC), or maximum log-likelihood criteria (resulting in a smaller error variance). As such, these models will also: 3) naturally lead to a more powerful analysis-of-covariance test of significance, which will 4) subsequently lead to more correct conclusions when investigating population (epidemiological) or experimental differences in physiological and anthropometric variables known to vary with body size. Yrbk Phys Anthropol 48:141–153, 2005. © 2005 Wiley-Liss, Inc." @default.
- W2022381389 created "2016-06-24" @default.
- W2022381389 creator A5017163642 @default.
- W2022381389 creator A5028349353 @default.
- W2022381389 creator A5062935855 @default.
- W2022381389 date "2005-01-01" @default.
- W2022381389 modified "2023-10-16" @default.
- W2022381389 title "Modeling Physiological and Anthropometric Variables Known to Vary with Body Size and Other Confounding Variables" @default.
- W2022381389 cites W181915217 @default.
- W2022381389 cites W1854917735 @default.
- W2022381389 cites W1869482123 @default.
- W2022381389 cites W1959838823 @default.
- W2022381389 cites W1968301106 @default.
- W2022381389 cites W1969804786 @default.
- W2022381389 cites W1970636319 @default.
- W2022381389 cites W1977850063 @default.
- W2022381389 cites W1985397693 @default.
- W2022381389 cites W1986260840 @default.
- W2022381389 cites W1988462389 @default.
- W2022381389 cites W1991928614 @default.
- W2022381389 cites W2004477938 @default.
- W2022381389 cites W2007466284 @default.
- W2022381389 cites W2010663321 @default.
- W2022381389 cites W2010925578 @default.
- W2022381389 cites W2014745978 @default.
- W2022381389 cites W2017165492 @default.
- W2022381389 cites W2018941630 @default.
- W2022381389 cites W2019927661 @default.
- W2022381389 cites W2024549765 @default.
- W2022381389 cites W2024801100 @default.
- W2022381389 cites W2026085103 @default.
- W2022381389 cites W2028435888 @default.
- W2022381389 cites W2048932504 @default.
- W2022381389 cites W2051955251 @default.
- W2022381389 cites W2053976252 @default.
- W2022381389 cites W2059417090 @default.
- W2022381389 cites W2062514607 @default.
- W2022381389 cites W2063217821 @default.
- W2022381389 cites W2064267602 @default.
- W2022381389 cites W2067134687 @default.
- W2022381389 cites W2073111359 @default.
- W2022381389 cites W2076172820 @default.
- W2022381389 cites W2080843536 @default.
- W2022381389 cites W2081079790 @default.
- W2022381389 cites W2081769364 @default.
- W2022381389 cites W2084339647 @default.
- W2022381389 cites W2097257698 @default.
- W2022381389 cites W2097813267 @default.
- W2022381389 cites W2098530831 @default.
- W2022381389 cites W2101530699 @default.
- W2022381389 cites W2103812813 @default.
- W2022381389 cites W2110373702 @default.
- W2022381389 cites W2112524236 @default.
- W2022381389 cites W2116064568 @default.
- W2022381389 cites W2117420689 @default.
- W2022381389 cites W2129017067 @default.
- W2022381389 cites W2130489174 @default.
- W2022381389 cites W2130579172 @default.
- W2022381389 cites W2134062824 @default.
- W2022381389 cites W2135785897 @default.
- W2022381389 cites W2138787677 @default.
- W2022381389 cites W2142635246 @default.
- W2022381389 cites W2158600115 @default.
- W2022381389 cites W2159591386 @default.
- W2022381389 cites W2162185202 @default.
- W2022381389 cites W2163156588 @default.
- W2022381389 cites W2170974514 @default.
- W2022381389 cites W2178590922 @default.
- W2022381389 cites W2263189686 @default.
- W2022381389 cites W2335648810 @default.
- W2022381389 cites W2338089797 @default.
- W2022381389 cites W2346698323 @default.
- W2022381389 cites W2397589763 @default.
- W2022381389 cites W4211177544 @default.
- W2022381389 cites W4239578492 @default.
- W2022381389 cites W474388437 @default.
- W2022381389 cites W69586344 @default.
- W2022381389 doi "https://doi.org/10.1002/ajpa.20356" @default.
- W2022381389 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16369959" @default.
- W2022381389 hasPublicationYear "2005" @default.
- W2022381389 type Work @default.
- W2022381389 sameAs 2022381389 @default.
- W2022381389 citedByCount "93" @default.
- W2022381389 countsByYear W20223813892012 @default.
- W2022381389 countsByYear W20223813892013 @default.
- W2022381389 countsByYear W20223813892014 @default.
- W2022381389 countsByYear W20223813892015 @default.
- W2022381389 countsByYear W20223813892016 @default.
- W2022381389 countsByYear W20223813892017 @default.
- W2022381389 countsByYear W20223813892018 @default.
- W2022381389 countsByYear W20223813892019 @default.
- W2022381389 countsByYear W20223813892020 @default.
- W2022381389 countsByYear W20223813892021 @default.
- W2022381389 countsByYear W20223813892022 @default.
- W2022381389 countsByYear W20223813892023 @default.
- W2022381389 crossrefType "journal-article" @default.
- W2022381389 hasAuthorship W2022381389A5017163642 @default.
- W2022381389 hasAuthorship W2022381389A5028349353 @default.