Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022383869> ?p ?o ?g. }
- W2022383869 abstract "The use of neural networks for time series prediction has been an important focus of recent research. Multi-objective optimization techniques have been used for training neural networks for time series prediction. Cooperative coevolution is an evolutionary computation method that decomposes the problem into subcomponents and has shown promising results for training neural networks. This paper presents a multi-objective cooperative coevolutionary method for training neural networks where the training data set is processed to obtain the different objectives for multi-objective evolutionary training of the neural network. We use different time lags as multi-objective criterion. The trained multi-objective neural network can give prediction of the original time series for preprocessed data sets distinguished by their time lags. The proposed method is able to outperform the conventional cooperative coevolutionary methods for training neural networks and also other methods from the literature on benchmark problems." @default.
- W2022383869 created "2016-06-24" @default.
- W2022383869 creator A5043246042 @default.
- W2022383869 creator A5045815994 @default.
- W2022383869 date "2014-07-01" @default.
- W2022383869 modified "2023-09-27" @default.
- W2022383869 title "Multi-objective cooperative coevolution of neural networks for time series prediction" @default.
- W2022383869 cites W1497414364 @default.
- W2022383869 cites W1524454772 @default.
- W2022383869 cites W1530336157 @default.
- W2022383869 cites W1535447534 @default.
- W2022383869 cites W1546762028 @default.
- W2022383869 cites W1549386224 @default.
- W2022383869 cites W1555689267 @default.
- W2022383869 cites W1558675754 @default.
- W2022383869 cites W1589436483 @default.
- W2022383869 cites W1591887881 @default.
- W2022383869 cites W1971537182 @default.
- W2022383869 cites W1972041576 @default.
- W2022383869 cites W1987912102 @default.
- W2022383869 cites W2002739427 @default.
- W2022383869 cites W2005369724 @default.
- W2022383869 cites W2012452381 @default.
- W2022383869 cites W2041882367 @default.
- W2022383869 cites W2055877700 @default.
- W2022383869 cites W2058092208 @default.
- W2022383869 cites W2058819127 @default.
- W2022383869 cites W2060123398 @default.
- W2022383869 cites W2072782187 @default.
- W2022383869 cites W2097333415 @default.
- W2022383869 cites W2100211715 @default.
- W2022383869 cites W2106506049 @default.
- W2022383869 cites W2109193644 @default.
- W2022383869 cites W2110371102 @default.
- W2022383869 cites W2110990923 @default.
- W2022383869 cites W2112071692 @default.
- W2022383869 cites W2117097643 @default.
- W2022383869 cites W2118233717 @default.
- W2022383869 cites W2126105956 @default.
- W2022383869 cites W2126546663 @default.
- W2022383869 cites W2141394518 @default.
- W2022383869 cites W2143299520 @default.
- W2022383869 cites W2148067905 @default.
- W2022383869 cites W2150809741 @default.
- W2022383869 cites W2164260548 @default.
- W2022383869 cites W2172198266 @default.
- W2022383869 cites W225560312 @default.
- W2022383869 cites W3176826459 @default.
- W2022383869 doi "https://doi.org/10.1109/ijcnn.2014.6889442" @default.
- W2022383869 hasPublicationYear "2014" @default.
- W2022383869 type Work @default.
- W2022383869 sameAs 2022383869 @default.
- W2022383869 citedByCount "13" @default.
- W2022383869 countsByYear W20223838692015 @default.
- W2022383869 countsByYear W20223838692016 @default.
- W2022383869 countsByYear W20223838692017 @default.
- W2022383869 crossrefType "proceedings-article" @default.
- W2022383869 hasAuthorship W2022383869A5043246042 @default.
- W2022383869 hasAuthorship W2022383869A5045815994 @default.
- W2022383869 hasConcept C105902424 @default.
- W2022383869 hasConcept C119857082 @default.
- W2022383869 hasConcept C13280743 @default.
- W2022383869 hasConcept C139502532 @default.
- W2022383869 hasConcept C143724316 @default.
- W2022383869 hasConcept C151406439 @default.
- W2022383869 hasConcept C151730666 @default.
- W2022383869 hasConcept C154945302 @default.
- W2022383869 hasConcept C159149176 @default.
- W2022383869 hasConcept C175202392 @default.
- W2022383869 hasConcept C177264268 @default.
- W2022383869 hasConcept C185798385 @default.
- W2022383869 hasConcept C199360897 @default.
- W2022383869 hasConcept C205649164 @default.
- W2022383869 hasConcept C33009525 @default.
- W2022383869 hasConcept C41008148 @default.
- W2022383869 hasConcept C41445625 @default.
- W2022383869 hasConcept C50644808 @default.
- W2022383869 hasConcept C86803240 @default.
- W2022383869 hasConceptScore W2022383869C105902424 @default.
- W2022383869 hasConceptScore W2022383869C119857082 @default.
- W2022383869 hasConceptScore W2022383869C13280743 @default.
- W2022383869 hasConceptScore W2022383869C139502532 @default.
- W2022383869 hasConceptScore W2022383869C143724316 @default.
- W2022383869 hasConceptScore W2022383869C151406439 @default.
- W2022383869 hasConceptScore W2022383869C151730666 @default.
- W2022383869 hasConceptScore W2022383869C154945302 @default.
- W2022383869 hasConceptScore W2022383869C159149176 @default.
- W2022383869 hasConceptScore W2022383869C175202392 @default.
- W2022383869 hasConceptScore W2022383869C177264268 @default.
- W2022383869 hasConceptScore W2022383869C185798385 @default.
- W2022383869 hasConceptScore W2022383869C199360897 @default.
- W2022383869 hasConceptScore W2022383869C205649164 @default.
- W2022383869 hasConceptScore W2022383869C33009525 @default.
- W2022383869 hasConceptScore W2022383869C41008148 @default.
- W2022383869 hasConceptScore W2022383869C41445625 @default.
- W2022383869 hasConceptScore W2022383869C50644808 @default.
- W2022383869 hasConceptScore W2022383869C86803240 @default.
- W2022383869 hasLocation W20223838691 @default.
- W2022383869 hasOpenAccess W2022383869 @default.
- W2022383869 hasPrimaryLocation W20223838691 @default.