Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022426423> ?p ?o ?g. }
- W2022426423 abstract "Abstract Abstract The prediction and estimation of suspended sediment concentration are investigated by using multi-layer perceptrons (MLP). The fastest MLP training algorithm, that is the Levenberg-Marquardt algorithm, is used for optimization of the network weights for data from two stations on the Tongue River in Montana, USA. The first part of the study deals with prediction and estimation of upstream and down-stream station sediment data, separately, and the second part focuses on the estimation of downstream suspended sediment data by using data from both stations. In each case, the MLP test results are compared to those of generalized regression neural networks (GRNN), radial basis function (RBF) and multi-linear regression (MLR) for the best-input combinations. Based on the comparisons, it was found that the MLP generally gives better suspended sediment concentration estimates than the other neural network techniques and the conventional statistical method (MLR). However, for the estimation of maximum sediment peak, the RBF was mostly found to be better than the MLP and the other techniques. The results also indicate that the RBF and GRNN may provide better performance than the MLP in the estimation of the total sediment load." @default.
- W2022426423 created "2016-06-24" @default.
- W2022426423 creator A5075190563 @default.
- W2022426423 date "2004-12-01" @default.
- W2022426423 modified "2023-09-29" @default.
- W2022426423 title "Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation / Prévision et estimation de la concentration en matières en suspension avec des perceptrons multi-couches et l’algorithme d’apprentissage de Levenberg-Marquardt" @default.
- W2022426423 cites W1967895196 @default.
- W2022426423 cites W1972843395 @default.
- W2022426423 cites W1979282872 @default.
- W2022426423 cites W1980597395 @default.
- W2022426423 cites W1986656491 @default.
- W2022426423 cites W1988594799 @default.
- W2022426423 cites W1998442441 @default.
- W2022426423 cites W2012027190 @default.
- W2022426423 cites W2015109197 @default.
- W2022426423 cites W2017198208 @default.
- W2022426423 cites W2024055822 @default.
- W2022426423 cites W2024056676 @default.
- W2022426423 cites W2029235078 @default.
- W2022426423 cites W2032691163 @default.
- W2022426423 cites W2063756720 @default.
- W2022426423 cites W2065329923 @default.
- W2022426423 cites W2073596094 @default.
- W2022426423 cites W2086472796 @default.
- W2022426423 cites W2089686343 @default.
- W2022426423 cites W2094447130 @default.
- W2022426423 cites W2103496339 @default.
- W2022426423 cites W2106202214 @default.
- W2022426423 cites W2123256209 @default.
- W2022426423 cites W2132483546 @default.
- W2022426423 cites W2133735282 @default.
- W2022426423 cites W2137983211 @default.
- W2022426423 cites W2149723649 @default.
- W2022426423 cites W2155399784 @default.
- W2022426423 cites W2160092465 @default.
- W2022426423 cites W2170100555 @default.
- W2022426423 cites W2311096170 @default.
- W2022426423 cites W4250004539 @default.
- W2022426423 cites W4300402905 @default.
- W2022426423 doi "https://doi.org/10.1623/hysj.49.6.1025.55720" @default.
- W2022426423 hasPublicationYear "2004" @default.
- W2022426423 type Work @default.
- W2022426423 sameAs 2022426423 @default.
- W2022426423 citedByCount "202" @default.
- W2022426423 countsByYear W20224264232012 @default.
- W2022426423 countsByYear W20224264232013 @default.
- W2022426423 countsByYear W20224264232014 @default.
- W2022426423 countsByYear W20224264232015 @default.
- W2022426423 countsByYear W20224264232016 @default.
- W2022426423 countsByYear W20224264232017 @default.
- W2022426423 countsByYear W20224264232018 @default.
- W2022426423 countsByYear W20224264232019 @default.
- W2022426423 countsByYear W20224264232020 @default.
- W2022426423 countsByYear W20224264232021 @default.
- W2022426423 countsByYear W20224264232022 @default.
- W2022426423 countsByYear W20224264232023 @default.
- W2022426423 crossrefType "journal-article" @default.
- W2022426423 hasAuthorship W2022426423A5075190563 @default.
- W2022426423 hasBestOaLocation W20224264231 @default.
- W2022426423 hasConcept C11413529 @default.
- W2022426423 hasConcept C114793014 @default.
- W2022426423 hasConcept C119857082 @default.
- W2022426423 hasConcept C127313418 @default.
- W2022426423 hasConcept C154945302 @default.
- W2022426423 hasConcept C179717631 @default.
- W2022426423 hasConcept C2816523 @default.
- W2022426423 hasConcept C41008148 @default.
- W2022426423 hasConcept C48921125 @default.
- W2022426423 hasConcept C50644808 @default.
- W2022426423 hasConcept C60908668 @default.
- W2022426423 hasConcept C87578567 @default.
- W2022426423 hasConceptScore W2022426423C11413529 @default.
- W2022426423 hasConceptScore W2022426423C114793014 @default.
- W2022426423 hasConceptScore W2022426423C119857082 @default.
- W2022426423 hasConceptScore W2022426423C127313418 @default.
- W2022426423 hasConceptScore W2022426423C154945302 @default.
- W2022426423 hasConceptScore W2022426423C179717631 @default.
- W2022426423 hasConceptScore W2022426423C2816523 @default.
- W2022426423 hasConceptScore W2022426423C41008148 @default.
- W2022426423 hasConceptScore W2022426423C48921125 @default.
- W2022426423 hasConceptScore W2022426423C50644808 @default.
- W2022426423 hasConceptScore W2022426423C60908668 @default.
- W2022426423 hasConceptScore W2022426423C87578567 @default.
- W2022426423 hasIssue "6" @default.
- W2022426423 hasLocation W20224264231 @default.
- W2022426423 hasOpenAccess W2022426423 @default.
- W2022426423 hasPrimaryLocation W20224264231 @default.
- W2022426423 hasRelatedWork W1545495127 @default.
- W2022426423 hasRelatedWork W1987886632 @default.
- W2022426423 hasRelatedWork W2161649813 @default.
- W2022426423 hasRelatedWork W2186980807 @default.
- W2022426423 hasRelatedWork W2331701639 @default.
- W2022426423 hasRelatedWork W2534198551 @default.
- W2022426423 hasRelatedWork W2797282764 @default.
- W2022426423 hasRelatedWork W2943894916 @default.
- W2022426423 hasRelatedWork W2994741194 @default.
- W2022426423 hasRelatedWork W4293365963 @default.
- W2022426423 hasVolume "49" @default.
- W2022426423 isParatext "false" @default.
- W2022426423 isRetracted "false" @default.