Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022460730> ?p ?o ?g. }
- W2022460730 endingPage "526" @default.
- W2022460730 startingPage "514" @default.
- W2022460730 abstract "A series of rhodium complexes CpRh(SiMe2X)2(SiMe3)(H) (X = Me, Cl, Br, I), Cp1–Cp4, CpRh(SiMe2X)2(PMe3)(H)+ (X = Me, Cl, Br, I), Cp5–Cp8, CpRh(SiMe3)2(SiF3)(H), Cp9, CpRh(SiMe3)2(SiH3)(H), Cp10, TpRh(SiH3)2(SiMe3)(H), Tp1, TpRh(SiH3)2(PMe3)(H)+, Tp2, and TpRh(SiF3)2(PMe3)(H)+, Tp3, were studied computationally to understand the hydrogen behavior in the Si···H···Si moiety. The hydride ligand interacts with at least one of the silyls, and in many cases with both, but is located asymmetrically with regard to them, giving rise to a double-well potential energy surface (PES) for hydrogen motion. The hydrogen transfer barriers ΔE vary from 0.03 to 3 kcal·mol–1. For selected complexes Tp1, Tp2, Tp3, and Cp9 the three-dimensional PESs were constructed and the vibrational Schrödinger equation was solved. The PES is highly anharmonic in all four cases. The hydrogen is delocalized between two silicons in complexes Tp1, Tp3, and Cp9, but localized around the energy minima in complex Tp2. Complex Tp3 is an intermediate case with a substantial tunneling. The delocalized behavior is pertinent to systems with ΔE < 0.25 kcal·mol–1. For complexes Tp1, Tp2, Tp3, and Cp9 the J(Si–H) spin–spin coupling constants were calculated taking into account the vibrational motion of hydride. For Tp1, Tp3, and Cp9 both J(Si1–H) and J(Si2–H) are negative due to simultaneous Si1···H···Si2 interactions, while for Tp2J(Si2–H) is positive, indicating a single Si···H interaction only. Negative J(Si–H) values were obtained even for Si···H distances as large as 2.3 Å (complex Tp3). A possible effect of vibrations on the J(Si–H) values is also discussed." @default.
- W2022460730 created "2016-06-24" @default.
- W2022460730 creator A5011642548 @default.
- W2022460730 creator A5070490233 @default.
- W2022460730 date "2013-01-09" @default.
- W2022460730 modified "2023-09-23" @default.
- W2022460730 title "Dynamic Behavior of Hydrogen in Transition Metal Bis(silyl) Hydride Complexes" @default.
- W2022460730 cites W1436293430 @default.
- W2022460730 cites W1448404673 @default.
- W2022460730 cites W1531249407 @default.
- W2022460730 cites W1965093651 @default.
- W2022460730 cites W1966358628 @default.
- W2022460730 cites W1970368062 @default.
- W2022460730 cites W1971275758 @default.
- W2022460730 cites W1972145883 @default.
- W2022460730 cites W1973271633 @default.
- W2022460730 cites W1973986838 @default.
- W2022460730 cites W1975708211 @default.
- W2022460730 cites W1977169564 @default.
- W2022460730 cites W1978620719 @default.
- W2022460730 cites W1981368803 @default.
- W2022460730 cites W1988091937 @default.
- W2022460730 cites W1989224265 @default.
- W2022460730 cites W1989344654 @default.
- W2022460730 cites W1994240164 @default.
- W2022460730 cites W1995159006 @default.
- W2022460730 cites W1998613997 @default.
- W2022460730 cites W2000746021 @default.
- W2022460730 cites W2000872531 @default.
- W2022460730 cites W2001641205 @default.
- W2022460730 cites W2005148229 @default.
- W2022460730 cites W2006630568 @default.
- W2022460730 cites W2009688272 @default.
- W2022460730 cites W2010984551 @default.
- W2022460730 cites W2013117481 @default.
- W2022460730 cites W2015723183 @default.
- W2022460730 cites W2016800344 @default.
- W2022460730 cites W2021662556 @default.
- W2022460730 cites W2022575680 @default.
- W2022460730 cites W2023271753 @default.
- W2022460730 cites W2024785578 @default.
- W2022460730 cites W2027314497 @default.
- W2022460730 cites W2028022118 @default.
- W2022460730 cites W2030687437 @default.
- W2022460730 cites W2036514153 @default.
- W2022460730 cites W2044940178 @default.
- W2022460730 cites W2047135999 @default.
- W2022460730 cites W2053784102 @default.
- W2022460730 cites W2055226865 @default.
- W2022460730 cites W2056833324 @default.
- W2022460730 cites W2057856989 @default.
- W2022460730 cites W2058703481 @default.
- W2022460730 cites W2059282990 @default.
- W2022460730 cites W2059530602 @default.
- W2022460730 cites W2062118495 @default.
- W2022460730 cites W2062732471 @default.
- W2022460730 cites W2062773259 @default.
- W2022460730 cites W2063800665 @default.
- W2022460730 cites W2066043175 @default.
- W2022460730 cites W2067721395 @default.
- W2022460730 cites W2067904223 @default.
- W2022460730 cites W2069006374 @default.
- W2022460730 cites W2069075205 @default.
- W2022460730 cites W2078089048 @default.
- W2022460730 cites W2079935930 @default.
- W2022460730 cites W2081349699 @default.
- W2022460730 cites W2082691688 @default.
- W2022460730 cites W2086957099 @default.
- W2022460730 cites W2087864238 @default.
- W2022460730 cites W2093878662 @default.
- W2022460730 cites W2094301107 @default.
- W2022460730 cites W2097923034 @default.
- W2022460730 cites W2104586900 @default.
- W2022460730 cites W2105016564 @default.
- W2022460730 cites W2106415923 @default.
- W2022460730 cites W2107254944 @default.
- W2022460730 cites W2115411735 @default.
- W2022460730 cites W2136680633 @default.
- W2022460730 cites W2148284063 @default.
- W2022460730 cites W2150195378 @default.
- W2022460730 cites W2150697053 @default.
- W2022460730 cites W2165079655 @default.
- W2022460730 cites W2170268376 @default.
- W2022460730 cites W2171445884 @default.
- W2022460730 cites W2171871493 @default.
- W2022460730 cites W2314056328 @default.
- W2022460730 cites W2316676532 @default.
- W2022460730 cites W2333474583 @default.
- W2022460730 cites W248059117 @default.
- W2022460730 cites W288163254 @default.
- W2022460730 cites W2884639843 @default.
- W2022460730 cites W2949359907 @default.
- W2022460730 cites W2952814102 @default.
- W2022460730 cites W2997081604 @default.
- W2022460730 cites W4237738536 @default.
- W2022460730 cites W4240035468 @default.
- W2022460730 cites W4240983166 @default.
- W2022460730 doi "https://doi.org/10.1021/om300981y" @default.