Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022503816> ?p ?o ?g. }
- W2022503816 endingPage "263" @default.
- W2022503816 startingPage "250" @default.
- W2022503816 abstract "The goal of this paper is to design a statistical test for the camera model identification problem. The approach is based on the heteroscedastic noise model, which more accurately describes a natural raw image. This model is characterized by only two parameters, which are considered as unique fingerprint to identify camera models. The camera model identification problem is cast in the framework of hypothesis testing theory. In an ideal context where all model parameters are perfectly known, the likelihood ratio test (LRT) is presented and its performances are theoretically established. For a practical use, two generalized LRTs are designed to deal with unknown model parameters so that they can meet a prescribed false alarm probability while ensuring a high detection performance. Numerical results on simulated images and real natural raw images highlight the relevance of the proposed approach." @default.
- W2022503816 created "2016-06-24" @default.
- W2022503816 creator A5030924469 @default.
- W2022503816 creator A5066992369 @default.
- W2022503816 creator A5091592720 @default.
- W2022503816 date "2014-01-01" @default.
- W2022503816 modified "2023-10-11" @default.
- W2022503816 title "Camera Model Identification Based on the Heteroscedastic Noise Model" @default.
- W2022503816 cites W1506864492 @default.
- W2022503816 cites W1515916247 @default.
- W2022503816 cites W1517606245 @default.
- W2022503816 cites W1972443911 @default.
- W2022503816 cites W1989898472 @default.
- W2022503816 cites W1990817426 @default.
- W2022503816 cites W2011085530 @default.
- W2022503816 cites W2014608908 @default.
- W2022503816 cites W2018612061 @default.
- W2022503816 cites W2048265462 @default.
- W2022503816 cites W2049771774 @default.
- W2022503816 cites W2086666872 @default.
- W2022503816 cites W2095657345 @default.
- W2022503816 cites W2095669091 @default.
- W2022503816 cites W2096754397 @default.
- W2022503816 cites W2102810410 @default.
- W2022503816 cites W2107820823 @default.
- W2022503816 cites W2107895809 @default.
- W2022503816 cites W2122410868 @default.
- W2022503816 cites W2124695272 @default.
- W2022503816 cites W2124929806 @default.
- W2022503816 cites W2129240197 @default.
- W2022503816 cites W2136035751 @default.
- W2022503816 cites W2137962663 @default.
- W2022503816 cites W2151939419 @default.
- W2022503816 cites W2154947579 @default.
- W2022503816 cites W2155319953 @default.
- W2022503816 cites W2156238933 @default.
- W2022503816 cites W2161870324 @default.
- W2022503816 cites W2163446914 @default.
- W2022503816 cites W2171074980 @default.
- W2022503816 cites W4237166040 @default.
- W2022503816 doi "https://doi.org/10.1109/tip.2013.2290596" @default.
- W2022503816 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24240001" @default.
- W2022503816 hasPublicationYear "2014" @default.
- W2022503816 type Work @default.
- W2022503816 sameAs 2022503816 @default.
- W2022503816 citedByCount "93" @default.
- W2022503816 countsByYear W20225038162013 @default.
- W2022503816 countsByYear W20225038162014 @default.
- W2022503816 countsByYear W20225038162015 @default.
- W2022503816 countsByYear W20225038162016 @default.
- W2022503816 countsByYear W20225038162017 @default.
- W2022503816 countsByYear W20225038162018 @default.
- W2022503816 countsByYear W20225038162019 @default.
- W2022503816 countsByYear W20225038162020 @default.
- W2022503816 countsByYear W20225038162021 @default.
- W2022503816 countsByYear W20225038162022 @default.
- W2022503816 countsByYear W20225038162023 @default.
- W2022503816 crossrefType "journal-article" @default.
- W2022503816 hasAuthorship W2022503816A5030924469 @default.
- W2022503816 hasAuthorship W2022503816A5066992369 @default.
- W2022503816 hasAuthorship W2022503816A5091592720 @default.
- W2022503816 hasConcept C101104100 @default.
- W2022503816 hasConcept C105795698 @default.
- W2022503816 hasConcept C114289077 @default.
- W2022503816 hasConcept C115961682 @default.
- W2022503816 hasConcept C116834253 @default.
- W2022503816 hasConcept C119857082 @default.
- W2022503816 hasConcept C151730666 @default.
- W2022503816 hasConcept C153180895 @default.
- W2022503816 hasConcept C154945302 @default.
- W2022503816 hasConcept C2776836416 @default.
- W2022503816 hasConcept C2779343474 @default.
- W2022503816 hasConcept C31972630 @default.
- W2022503816 hasConcept C33923547 @default.
- W2022503816 hasConcept C41008148 @default.
- W2022503816 hasConcept C59822182 @default.
- W2022503816 hasConcept C86803240 @default.
- W2022503816 hasConcept C9483764 @default.
- W2022503816 hasConcept C99498987 @default.
- W2022503816 hasConceptScore W2022503816C101104100 @default.
- W2022503816 hasConceptScore W2022503816C105795698 @default.
- W2022503816 hasConceptScore W2022503816C114289077 @default.
- W2022503816 hasConceptScore W2022503816C115961682 @default.
- W2022503816 hasConceptScore W2022503816C116834253 @default.
- W2022503816 hasConceptScore W2022503816C119857082 @default.
- W2022503816 hasConceptScore W2022503816C151730666 @default.
- W2022503816 hasConceptScore W2022503816C153180895 @default.
- W2022503816 hasConceptScore W2022503816C154945302 @default.
- W2022503816 hasConceptScore W2022503816C2776836416 @default.
- W2022503816 hasConceptScore W2022503816C2779343474 @default.
- W2022503816 hasConceptScore W2022503816C31972630 @default.
- W2022503816 hasConceptScore W2022503816C33923547 @default.
- W2022503816 hasConceptScore W2022503816C41008148 @default.
- W2022503816 hasConceptScore W2022503816C59822182 @default.
- W2022503816 hasConceptScore W2022503816C86803240 @default.
- W2022503816 hasConceptScore W2022503816C9483764 @default.
- W2022503816 hasConceptScore W2022503816C99498987 @default.
- W2022503816 hasIssue "1" @default.