Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022505761> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2022505761 abstract "Although multi-label learning can deal with many problems with label ambiguity, it does not fit some real applications well where the overall distribution of the importance of the labels matters. This paper proposes a novel learning paradigm named label distribution learning (LDL) for such kind of applications. The label distribution covers a certain number of labels, representing the degree to which each label describes the instance. LDL is a more general learning framework which includes both single-label and multi-label learning as its special cases. This paper proposes six LDL algorithms in three ways: problem transformation, algorithm adaptation, and specialized algorithm design. In order to compare their performance, six evaluation measures are suggested for LDL algorithms, and the first batch of real-world label distribution datasets are prepared. Experimental results on the ten real-world datasets show clear advantage of the specialized algorithms, which indicates the importance of special design for the characteristics of the LDL problem." @default.
- W2022505761 created "2016-06-24" @default.
- W2022505761 creator A5007301315 @default.
- W2022505761 creator A5074742406 @default.
- W2022505761 date "2013-12-01" @default.
- W2022505761 modified "2023-09-26" @default.
- W2022505761 title "Label Distribution Learning" @default.
- W2022505761 cites W1529085430 @default.
- W2022505761 cites W2038790645 @default.
- W2022505761 cites W2063683862 @default.
- W2022505761 cites W2066454034 @default.
- W2022505761 cites W2102667697 @default.
- W2022505761 cites W2102705755 @default.
- W2022505761 cites W2146241755 @default.
- W2022505761 cites W2150926065 @default.
- W2022505761 cites W2153635508 @default.
- W2022505761 cites W2160842254 @default.
- W2022505761 cites W2803327664 @default.
- W2022505761 cites W647955820 @default.
- W2022505761 doi "https://doi.org/10.1109/icdmw.2013.19" @default.
- W2022505761 hasPublicationYear "2013" @default.
- W2022505761 type Work @default.
- W2022505761 sameAs 2022505761 @default.
- W2022505761 citedByCount "29" @default.
- W2022505761 countsByYear W20225057612015 @default.
- W2022505761 countsByYear W20225057612016 @default.
- W2022505761 countsByYear W20225057612017 @default.
- W2022505761 countsByYear W20225057612018 @default.
- W2022505761 countsByYear W20225057612019 @default.
- W2022505761 countsByYear W20225057612020 @default.
- W2022505761 countsByYear W20225057612021 @default.
- W2022505761 countsByYear W20225057612022 @default.
- W2022505761 crossrefType "proceedings-article" @default.
- W2022505761 hasAuthorship W2022505761A5007301315 @default.
- W2022505761 hasAuthorship W2022505761A5074742406 @default.
- W2022505761 hasBestOaLocation W20225057612 @default.
- W2022505761 hasConcept C110121322 @default.
- W2022505761 hasConcept C119857082 @default.
- W2022505761 hasConcept C120665830 @default.
- W2022505761 hasConcept C121332964 @default.
- W2022505761 hasConcept C134306372 @default.
- W2022505761 hasConcept C139807058 @default.
- W2022505761 hasConcept C154945302 @default.
- W2022505761 hasConcept C199360897 @default.
- W2022505761 hasConcept C2780522230 @default.
- W2022505761 hasConcept C33923547 @default.
- W2022505761 hasConcept C41008148 @default.
- W2022505761 hasConceptScore W2022505761C110121322 @default.
- W2022505761 hasConceptScore W2022505761C119857082 @default.
- W2022505761 hasConceptScore W2022505761C120665830 @default.
- W2022505761 hasConceptScore W2022505761C121332964 @default.
- W2022505761 hasConceptScore W2022505761C134306372 @default.
- W2022505761 hasConceptScore W2022505761C139807058 @default.
- W2022505761 hasConceptScore W2022505761C154945302 @default.
- W2022505761 hasConceptScore W2022505761C199360897 @default.
- W2022505761 hasConceptScore W2022505761C2780522230 @default.
- W2022505761 hasConceptScore W2022505761C33923547 @default.
- W2022505761 hasConceptScore W2022505761C41008148 @default.
- W2022505761 hasLocation W20225057611 @default.
- W2022505761 hasLocation W20225057612 @default.
- W2022505761 hasLocation W20225057613 @default.
- W2022505761 hasOpenAccess W2022505761 @default.
- W2022505761 hasPrimaryLocation W20225057611 @default.
- W2022505761 hasRelatedWork W1571518467 @default.
- W2022505761 hasRelatedWork W2961085424 @default.
- W2022505761 hasRelatedWork W3046775127 @default.
- W2022505761 hasRelatedWork W3170094116 @default.
- W2022505761 hasRelatedWork W4285260836 @default.
- W2022505761 hasRelatedWork W4286629047 @default.
- W2022505761 hasRelatedWork W4306321456 @default.
- W2022505761 hasRelatedWork W4306674287 @default.
- W2022505761 hasRelatedWork W87991986 @default.
- W2022505761 hasRelatedWork W4224009465 @default.
- W2022505761 isParatext "false" @default.
- W2022505761 isRetracted "false" @default.
- W2022505761 magId "2022505761" @default.
- W2022505761 workType "article" @default.