Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022508624> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2022508624 endingPage "8151" @default.
- W2022508624 startingPage "8141" @default.
- W2022508624 abstract "Using COMSOL Multiphysics 3.5, 3D numerical models of different microfluidic fuel cells have been developed in this paper to determine the effect of different modifications which have been implemented in the microfluidic fuel cell since its advent. These modifications include the channel geometry aspect ratio and electrode configuration, the third flow between the anolyte and catholyte in the channel (i.e., multi-stream laminar flow), and multiple periodically placed inlets. To be consistent with the convention, the output power of the device is normalized by the electrode surface area; however, the power density calculations are also performed through normalization by the device volume. It is shown that the latter method is more realistic and providing more information from the design point of view since the ultimate goal in designing the microfluidic fuel cell is to fabricate a compact, yet powerful device. Finally, a novel design of the microfluidic fuel cell with a tapered channel is suggested and compared to the non-tapered geometry through the polarization curves. The steps which have been taken in COMSOL to obtain these polarization curves are clearly and thoroughly explained. The Butler–Volmer equation was implemented to incorporate for the electrochemical reactions at the electrodes. The “Conductive Media DC” module, in COMSOL, is used to model the electric fields within the fuel cell. The concentration distributions of the reactant species are obtained using the “Incompressible Navier–Stokes” and “Convection and Diffusion” modules. Solving these equations together predicts the current density for given cell voltage values. The results demonstrate the cell voltage losses due to activation, ohmic and concentration overpotentials. It is shown that for a fixed value of the cell voltage (say 0.45 V), the fuel cell with multiple periodically placed inlets has the highest fuel utilization (i.e., 62.3%); while the “Simple square” geometry depicts 13.8% fuel utilization at this potential. Thus, the multiple-inlets design is particularly suitable for low-voltage applications which require high current. Also, the results of the tapered geometry proposed in this paper show that tapering the channel enhances the polarization curve comparing to the square cross-section geometry with extended electrodes. In essence, the fuel utilization of the “Extended square” geometry is increased from 15.4% to 57.6% by tapering the channel. This is due to the fact that the mixing region growth rate is restricted in the tapered geometry, and hence the electrodes on the top and bottom walls of the channel can be more extended toward the centre of the channel before the crossover occurs." @default.
- W2022508624 created "2016-06-24" @default.
- W2022508624 creator A5005426761 @default.
- W2022508624 creator A5037375302 @default.
- W2022508624 creator A5043910649 @default.
- W2022508624 date "2010-12-15" @default.
- W2022508624 modified "2023-10-01" @default.
- W2022508624 title "Numerical study of the effect of the channel and electrode geometry on the performance of microfluidic fuel cells" @default.
- W2022508624 cites W1969405466 @default.
- W2022508624 cites W1984684733 @default.
- W2022508624 cites W1995561632 @default.
- W2022508624 cites W2002624045 @default.
- W2022508624 cites W2007199869 @default.
- W2022508624 cites W2012206150 @default.
- W2022508624 cites W2041402624 @default.
- W2022508624 cites W2068726347 @default.
- W2022508624 cites W2083435388 @default.
- W2022508624 cites W2085555121 @default.
- W2022508624 cites W2094692204 @default.
- W2022508624 cites W2104925496 @default.
- W2022508624 cites W2140172482 @default.
- W2022508624 cites W2155991911 @default.
- W2022508624 cites W2162135551 @default.
- W2022508624 cites W2162426411 @default.
- W2022508624 cites W2170703464 @default.
- W2022508624 doi "https://doi.org/10.1016/j.jpowsour.2010.06.094" @default.
- W2022508624 hasPublicationYear "2010" @default.
- W2022508624 type Work @default.
- W2022508624 sameAs 2022508624 @default.
- W2022508624 citedByCount "76" @default.
- W2022508624 countsByYear W20225086242012 @default.
- W2022508624 countsByYear W20225086242013 @default.
- W2022508624 countsByYear W20225086242014 @default.
- W2022508624 countsByYear W20225086242015 @default.
- W2022508624 countsByYear W20225086242016 @default.
- W2022508624 countsByYear W20225086242017 @default.
- W2022508624 countsByYear W20225086242018 @default.
- W2022508624 countsByYear W20225086242019 @default.
- W2022508624 countsByYear W20225086242020 @default.
- W2022508624 countsByYear W20225086242021 @default.
- W2022508624 countsByYear W20225086242022 @default.
- W2022508624 countsByYear W20225086242023 @default.
- W2022508624 crossrefType "journal-article" @default.
- W2022508624 hasAuthorship W2022508624A5005426761 @default.
- W2022508624 hasAuthorship W2022508624A5037375302 @default.
- W2022508624 hasAuthorship W2022508624A5043910649 @default.
- W2022508624 hasConcept C121332964 @default.
- W2022508624 hasConcept C135628077 @default.
- W2022508624 hasConcept C147789679 @default.
- W2022508624 hasConcept C163258240 @default.
- W2022508624 hasConcept C171250308 @default.
- W2022508624 hasConcept C17525397 @default.
- W2022508624 hasConcept C185592680 @default.
- W2022508624 hasConcept C192562407 @default.
- W2022508624 hasConcept C205049153 @default.
- W2022508624 hasConcept C21881925 @default.
- W2022508624 hasConcept C46435376 @default.
- W2022508624 hasConcept C57879066 @default.
- W2022508624 hasConcept C76563973 @default.
- W2022508624 hasConcept C8673954 @default.
- W2022508624 hasConcept C97355855 @default.
- W2022508624 hasConceptScore W2022508624C121332964 @default.
- W2022508624 hasConceptScore W2022508624C135628077 @default.
- W2022508624 hasConceptScore W2022508624C147789679 @default.
- W2022508624 hasConceptScore W2022508624C163258240 @default.
- W2022508624 hasConceptScore W2022508624C171250308 @default.
- W2022508624 hasConceptScore W2022508624C17525397 @default.
- W2022508624 hasConceptScore W2022508624C185592680 @default.
- W2022508624 hasConceptScore W2022508624C192562407 @default.
- W2022508624 hasConceptScore W2022508624C205049153 @default.
- W2022508624 hasConceptScore W2022508624C21881925 @default.
- W2022508624 hasConceptScore W2022508624C46435376 @default.
- W2022508624 hasConceptScore W2022508624C57879066 @default.
- W2022508624 hasConceptScore W2022508624C76563973 @default.
- W2022508624 hasConceptScore W2022508624C8673954 @default.
- W2022508624 hasConceptScore W2022508624C97355855 @default.
- W2022508624 hasIssue "24" @default.
- W2022508624 hasLocation W20225086241 @default.
- W2022508624 hasOpenAccess W2022508624 @default.
- W2022508624 hasPrimaryLocation W20225086241 @default.
- W2022508624 hasRelatedWork W123678074 @default.
- W2022508624 hasRelatedWork W1986517617 @default.
- W2022508624 hasRelatedWork W2008766714 @default.
- W2022508624 hasRelatedWork W2252989362 @default.
- W2022508624 hasRelatedWork W2899084033 @default.
- W2022508624 hasRelatedWork W3126899915 @default.
- W2022508624 hasRelatedWork W3216049862 @default.
- W2022508624 hasRelatedWork W4206915694 @default.
- W2022508624 hasRelatedWork W4246258039 @default.
- W2022508624 hasRelatedWork W4281550762 @default.
- W2022508624 hasVolume "195" @default.
- W2022508624 isParatext "false" @default.
- W2022508624 isRetracted "false" @default.
- W2022508624 magId "2022508624" @default.
- W2022508624 workType "article" @default.