Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022509621> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2022509621 abstract "A dimension in a data warehouse (DW) is an abstract concept that groups data that share a common semantic meaning. The dimensions are modeled using a hierarchical schema of categories. A dimension is called strict if every element of each category has exactly one ancestor in each parent category, and covering if each element of a category has an ancestor in each parent category. If a dimension is strict and covering we can use pre-computed results at lower levels to answer queries at higher levels. This capability of computing summaries is vital for efficiency purposes. Nevertheless, when dimensions are not strict/covering it is important to know their strictness and covering constraints to keep the capability of obtaining correct summarizations. Real world dimensions might fail to satisfy these constraints, and, in these cases, it is important to find ways to fix the dimensions (correct them) or find ways to get correct answers to queries posed on inconsistent dimensions. A minimal repair is a new dimension that satisfies the strictness and covering constraints, and that is obtained from the original dimension through a minimum number of changes. The set of minimal repairs can be used as a tool to compute answers to aggregate queries in the presence of inconsistencies. However, computing all of them is NP-hard. In this paper, instead of trying to find all possible minimal repairs, we define a single compatible repair that is consistent with respect to both strictness and covering constraints, is close to the inconsistent dimension, can be computed efficiently and can be used to compute approximate answers to aggregate queries. In order to define the compatible repair we defined the notion of extended dimension that supports sets of elements in categories." @default.
- W2022509621 created "2016-06-24" @default.
- W2022509621 creator A5010276435 @default.
- W2022509621 creator A5076899481 @default.
- W2022509621 creator A5086893629 @default.
- W2022509621 date "2013-10-28" @default.
- W2022509621 modified "2023-09-27" @default.
- W2022509621 title "Extended dimensions for cleaning and querying inconsistent data warehouses" @default.
- W2022509621 cites W1909595960 @default.
- W2022509621 cites W1968461475 @default.
- W2022509621 cites W1971509121 @default.
- W2022509621 cites W1975968096 @default.
- W2022509621 cites W1976248347 @default.
- W2022509621 cites W2006315879 @default.
- W2022509621 cites W2015348866 @default.
- W2022509621 cites W2023382806 @default.
- W2022509621 cites W2026130312 @default.
- W2022509621 cites W2044399674 @default.
- W2022509621 cites W2046769817 @default.
- W2022509621 cites W2072764742 @default.
- W2022509621 cites W2171332293 @default.
- W2022509621 doi "https://doi.org/10.1145/2513190.2513193" @default.
- W2022509621 hasPublicationYear "2013" @default.
- W2022509621 type Work @default.
- W2022509621 sameAs 2022509621 @default.
- W2022509621 citedByCount "2" @default.
- W2022509621 countsByYear W20225096212013 @default.
- W2022509621 countsByYear W20225096212018 @default.
- W2022509621 crossrefType "proceedings-article" @default.
- W2022509621 hasAuthorship W2022509621A5010276435 @default.
- W2022509621 hasAuthorship W2022509621A5076899481 @default.
- W2022509621 hasAuthorship W2022509621A5086893629 @default.
- W2022509621 hasConcept C114614502 @default.
- W2022509621 hasConcept C124101348 @default.
- W2022509621 hasConcept C135572916 @default.
- W2022509621 hasConcept C159985019 @default.
- W2022509621 hasConcept C177264268 @default.
- W2022509621 hasConcept C17744445 @default.
- W2022509621 hasConcept C192562407 @default.
- W2022509621 hasConcept C199360897 @default.
- W2022509621 hasConcept C199539241 @default.
- W2022509621 hasConcept C200288055 @default.
- W2022509621 hasConcept C23123220 @default.
- W2022509621 hasConcept C33676613 @default.
- W2022509621 hasConcept C33923547 @default.
- W2022509621 hasConcept C41008148 @default.
- W2022509621 hasConcept C4679612 @default.
- W2022509621 hasConcept C52146309 @default.
- W2022509621 hasConcept C80444323 @default.
- W2022509621 hasConceptScore W2022509621C114614502 @default.
- W2022509621 hasConceptScore W2022509621C124101348 @default.
- W2022509621 hasConceptScore W2022509621C135572916 @default.
- W2022509621 hasConceptScore W2022509621C159985019 @default.
- W2022509621 hasConceptScore W2022509621C177264268 @default.
- W2022509621 hasConceptScore W2022509621C17744445 @default.
- W2022509621 hasConceptScore W2022509621C192562407 @default.
- W2022509621 hasConceptScore W2022509621C199360897 @default.
- W2022509621 hasConceptScore W2022509621C199539241 @default.
- W2022509621 hasConceptScore W2022509621C200288055 @default.
- W2022509621 hasConceptScore W2022509621C23123220 @default.
- W2022509621 hasConceptScore W2022509621C33676613 @default.
- W2022509621 hasConceptScore W2022509621C33923547 @default.
- W2022509621 hasConceptScore W2022509621C41008148 @default.
- W2022509621 hasConceptScore W2022509621C4679612 @default.
- W2022509621 hasConceptScore W2022509621C52146309 @default.
- W2022509621 hasConceptScore W2022509621C80444323 @default.
- W2022509621 hasLocation W20225096211 @default.
- W2022509621 hasOpenAccess W2022509621 @default.
- W2022509621 hasPrimaryLocation W20225096211 @default.
- W2022509621 hasRelatedWork W141397823 @default.
- W2022509621 hasRelatedWork W1524599491 @default.
- W2022509621 hasRelatedWork W1591045846 @default.
- W2022509621 hasRelatedWork W2138477815 @default.
- W2022509621 hasRelatedWork W2353951999 @default.
- W2022509621 hasRelatedWork W2384961506 @default.
- W2022509621 hasRelatedWork W2386125924 @default.
- W2022509621 hasRelatedWork W2386545545 @default.
- W2022509621 hasRelatedWork W2584778118 @default.
- W2022509621 hasRelatedWork W3042117911 @default.
- W2022509621 isParatext "false" @default.
- W2022509621 isRetracted "false" @default.
- W2022509621 magId "2022509621" @default.
- W2022509621 workType "article" @default.