Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022602685> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2022602685 abstract "Over the past quarter century, concepts and theory derived from neural networks (NNs) have featured prominently in the literature of pattern recognition. Implementationally, classical NNs based on the linear inner product can present performance challenges due to the use of multiplication operations. In contrast, NNs having nonlinear kernels based on Lattice Associative Memories (LAM) theory tend to concentrate primarily on addition and maximum/minimum operations. More generally, the emergence of LAM-based NNs, with their superior information storage capacity, fast convergence and training due to relatively lower computational cost, as well as noise-tolerant classification has extended the capabilities of neural networks far beyond the limited applications potential of classical NNs. This paper explores theory and algorithmic approaches for the efficient computation of LAM-based neural networks, in particular lattice neural nets and dendritic lattice associative memories. Of particular interest are massively parallel architectures such as multicore CPUs and graphics processing units (GPUs). Originally developed for video gaming applications, GPUs hold the promise of high computational throughput without compromising numerical accuracy. Unfortunately, currently-available GPU architectures tend to have idiosyncratic memory hierarchies that can produce unacceptably high data movement latencies for relatively simple operations, unless careful design of theory and algorithms is employed. Advantageously, some GPUs (e.g., the Nvidia Fermi GPU) are optimized for efficient streaming computation (e.g., concurrent multiply and add operations). As a result, the linear or nonlinear inner product structures of NNs are inherently suited to multicore GPU computational capabilities. In this paper, the authors' recent research in lattice associative memories and their implementation on multicores is overviewed, with results that show utility for a wide variety of pattern classification applications using classical NNs or lattice-based NNs. Dataflow diagrams are presented in terms of a parameterized model of data burden and LAM partitioning." @default.
- W2022602685 created "2016-06-24" @default.
- W2022602685 creator A5041788462 @default.
- W2022602685 creator A5042757250 @default.
- W2022602685 creator A5068084125 @default.
- W2022602685 date "2011-09-08" @default.
- W2022602685 modified "2023-09-23" @default.
- W2022602685 title "Massively parallel computation of lattice associative memory classifiers on multicore processors" @default.
- W2022602685 doi "https://doi.org/10.1117/12.896562" @default.
- W2022602685 hasPublicationYear "2011" @default.
- W2022602685 type Work @default.
- W2022602685 sameAs 2022602685 @default.
- W2022602685 citedByCount "0" @default.
- W2022602685 crossrefType "proceedings-article" @default.
- W2022602685 hasAuthorship W2022602685A5041788462 @default.
- W2022602685 hasAuthorship W2022602685A5042757250 @default.
- W2022602685 hasAuthorship W2022602685A5068084125 @default.
- W2022602685 hasConcept C11413529 @default.
- W2022602685 hasConcept C150552126 @default.
- W2022602685 hasConcept C154945302 @default.
- W2022602685 hasConcept C173608175 @default.
- W2022602685 hasConcept C188045654 @default.
- W2022602685 hasConcept C190475519 @default.
- W2022602685 hasConcept C2781172179 @default.
- W2022602685 hasConcept C41008148 @default.
- W2022602685 hasConcept C45374587 @default.
- W2022602685 hasConcept C50644808 @default.
- W2022602685 hasConcept C53442348 @default.
- W2022602685 hasConcept C61483411 @default.
- W2022602685 hasConcept C78766204 @default.
- W2022602685 hasConceptScore W2022602685C11413529 @default.
- W2022602685 hasConceptScore W2022602685C150552126 @default.
- W2022602685 hasConceptScore W2022602685C154945302 @default.
- W2022602685 hasConceptScore W2022602685C173608175 @default.
- W2022602685 hasConceptScore W2022602685C188045654 @default.
- W2022602685 hasConceptScore W2022602685C190475519 @default.
- W2022602685 hasConceptScore W2022602685C2781172179 @default.
- W2022602685 hasConceptScore W2022602685C41008148 @default.
- W2022602685 hasConceptScore W2022602685C45374587 @default.
- W2022602685 hasConceptScore W2022602685C50644808 @default.
- W2022602685 hasConceptScore W2022602685C53442348 @default.
- W2022602685 hasConceptScore W2022602685C61483411 @default.
- W2022602685 hasConceptScore W2022602685C78766204 @default.
- W2022602685 hasLocation W20226026851 @default.
- W2022602685 hasOpenAccess W2022602685 @default.
- W2022602685 hasPrimaryLocation W20226026851 @default.
- W2022602685 hasRelatedWork W1528982188 @default.
- W2022602685 hasRelatedWork W1595151633 @default.
- W2022602685 hasRelatedWork W2002601993 @default.
- W2022602685 hasRelatedWork W2022602685 @default.
- W2022602685 hasRelatedWork W2074226157 @default.
- W2022602685 hasRelatedWork W2104958979 @default.
- W2022602685 hasRelatedWork W2134896109 @default.
- W2022602685 hasRelatedWork W2364494728 @default.
- W2022602685 hasRelatedWork W2624002939 @default.
- W2022602685 hasRelatedWork W2950263839 @default.
- W2022602685 isParatext "false" @default.
- W2022602685 isRetracted "false" @default.
- W2022602685 magId "2022602685" @default.
- W2022602685 workType "article" @default.