Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022604610> ?p ?o ?g. }
- W2022604610 endingPage "846" @default.
- W2022604610 startingPage "836" @default.
- W2022604610 abstract "The classical ridge regression technique makes an assumption that the noise is Gaussian. However, it is reported that the noise models in some practical applications do not satisfy Gaussian distribution, such as wind speed prediction. In this case, the classical regression techniques are not optimal. So we derive an optimal loss function and construct a new framework of kernel ridge regression technique for general noise model (N-KRR). The Augmented Lagrangian Multiplier method is introduced to solve N-KRR. We test the proposed technique on artificial data and short-term wind speed prediction. Experimental results confirm the effectiveness of the proposed model." @default.
- W2022604610 created "2016-06-24" @default.
- W2022604610 creator A5027967337 @default.
- W2022604610 creator A5056686459 @default.
- W2022604610 creator A5058970337 @default.
- W2022604610 creator A5090938988 @default.
- W2022604610 date "2015-02-01" @default.
- W2022604610 modified "2023-10-17" @default.
- W2022604610 title "Kernel ridge regression for general noise model with its application" @default.
- W2022604610 cites W1596717185 @default.
- W2022604610 cites W1839113334 @default.
- W2022604610 cites W1978996791 @default.
- W2022604610 cites W2033351162 @default.
- W2022604610 cites W2037091587 @default.
- W2022604610 cites W2038751902 @default.
- W2022604610 cites W2041099987 @default.
- W2022604610 cites W2066622786 @default.
- W2022604610 cites W2073178078 @default.
- W2022604610 cites W2076118331 @default.
- W2022604610 cites W2101457442 @default.
- W2022604610 cites W2104266700 @default.
- W2022604610 cites W2108995755 @default.
- W2022604610 cites W2143833218 @default.
- W2022604610 cites W2145768101 @default.
- W2022604610 cites W2150285824 @default.
- W2022604610 cites W2157570139 @default.
- W2022604610 cites W2162067990 @default.
- W2022604610 cites W2164040150 @default.
- W2022604610 cites W4234698323 @default.
- W2022604610 doi "https://doi.org/10.1016/j.neucom.2014.07.051" @default.
- W2022604610 hasPublicationYear "2015" @default.
- W2022604610 type Work @default.
- W2022604610 sameAs 2022604610 @default.
- W2022604610 citedByCount "24" @default.
- W2022604610 countsByYear W20226046102016 @default.
- W2022604610 countsByYear W20226046102017 @default.
- W2022604610 countsByYear W20226046102018 @default.
- W2022604610 countsByYear W20226046102019 @default.
- W2022604610 countsByYear W20226046102020 @default.
- W2022604610 countsByYear W20226046102021 @default.
- W2022604610 countsByYear W20226046102022 @default.
- W2022604610 countsByYear W20226046102023 @default.
- W2022604610 crossrefType "journal-article" @default.
- W2022604610 hasAuthorship W2022604610A5027967337 @default.
- W2022604610 hasAuthorship W2022604610A5056686459 @default.
- W2022604610 hasAuthorship W2022604610A5058970337 @default.
- W2022604610 hasAuthorship W2022604610A5090938988 @default.
- W2022604610 hasConcept C105795698 @default.
- W2022604610 hasConcept C11413529 @default.
- W2022604610 hasConcept C114614502 @default.
- W2022604610 hasConcept C115961682 @default.
- W2022604610 hasConcept C121332964 @default.
- W2022604610 hasConcept C126255220 @default.
- W2022604610 hasConcept C151730666 @default.
- W2022604610 hasConcept C152877465 @default.
- W2022604610 hasConcept C154945302 @default.
- W2022604610 hasConcept C163716315 @default.
- W2022604610 hasConcept C200695384 @default.
- W2022604610 hasConcept C28826006 @default.
- W2022604610 hasConcept C32277403 @default.
- W2022604610 hasConcept C33923547 @default.
- W2022604610 hasConcept C41008148 @default.
- W2022604610 hasConcept C61797465 @default.
- W2022604610 hasConcept C62520636 @default.
- W2022604610 hasConcept C74193536 @default.
- W2022604610 hasConcept C83546350 @default.
- W2022604610 hasConcept C86803240 @default.
- W2022604610 hasConcept C99498987 @default.
- W2022604610 hasConceptScore W2022604610C105795698 @default.
- W2022604610 hasConceptScore W2022604610C11413529 @default.
- W2022604610 hasConceptScore W2022604610C114614502 @default.
- W2022604610 hasConceptScore W2022604610C115961682 @default.
- W2022604610 hasConceptScore W2022604610C121332964 @default.
- W2022604610 hasConceptScore W2022604610C126255220 @default.
- W2022604610 hasConceptScore W2022604610C151730666 @default.
- W2022604610 hasConceptScore W2022604610C152877465 @default.
- W2022604610 hasConceptScore W2022604610C154945302 @default.
- W2022604610 hasConceptScore W2022604610C163716315 @default.
- W2022604610 hasConceptScore W2022604610C200695384 @default.
- W2022604610 hasConceptScore W2022604610C28826006 @default.
- W2022604610 hasConceptScore W2022604610C32277403 @default.
- W2022604610 hasConceptScore W2022604610C33923547 @default.
- W2022604610 hasConceptScore W2022604610C41008148 @default.
- W2022604610 hasConceptScore W2022604610C61797465 @default.
- W2022604610 hasConceptScore W2022604610C62520636 @default.
- W2022604610 hasConceptScore W2022604610C74193536 @default.
- W2022604610 hasConceptScore W2022604610C83546350 @default.
- W2022604610 hasConceptScore W2022604610C86803240 @default.
- W2022604610 hasConceptScore W2022604610C99498987 @default.
- W2022604610 hasFunder F4320321001 @default.
- W2022604610 hasLocation W20226046101 @default.
- W2022604610 hasOpenAccess W2022604610 @default.
- W2022604610 hasPrimaryLocation W20226046101 @default.
- W2022604610 hasRelatedWork W1606169643 @default.
- W2022604610 hasRelatedWork W1756543539 @default.
- W2022604610 hasRelatedWork W1964950501 @default.
- W2022604610 hasRelatedWork W2016473337 @default.
- W2022604610 hasRelatedWork W2027485470 @default.