Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022638063> ?p ?o ?g. }
- W2022638063 endingPage "515" @default.
- W2022638063 startingPage "499" @default.
- W2022638063 abstract "Neurons and axon terminals (puncta) immunostained by an antibody against glutamic acid decarboxylase were studied in layer I of adult rats in architectonically identified area 41 of auditory cortex. The borders of area 41 and the laminar subdivisions of cortex were established in normal material and in other studies of cortical connections. Vibratomed or frozen sections were immunostained. The objectives of the study were to classify the types of (i) glutamic acid decarboxylase-positive neurons and (ii) puncta, and (iii) to examine their spatial distribution within layer I. Control sections were devoid of specific immunostaining. More than 90% of layer I cells are glutamic acid decarboxylase-positive. Four types of neuron were identified in Golgi material, including small neurons with stellate dendritic fields, horizontal cells with laterally projecting arbors, medium-sized neurons with stellate, widely ramifying dendritic fields, and large neurons with broad dendritic fields spanning the depth of layer I or branching laterally. In the glutamic acid decarboxylase material, examples with a somatodendritic shape matching each of these types were found. The average somatic diameter of glutamic acid decarboxylase-positive neurons (X¯= 59μm2, S.D. = 21μm2) suggests that the small and medium-sized neurons predominate. Glutamic acid decarboxylase-positive neurons occur throughout the depth of layer I, but are far more numerous in the deeper half (68% in layer Ib) than in the superficial part (32% in layer Ia). Glutamic acid decarboxylase-positive neurons form small clusters of three to five cells across the cortical surface, with a range of 0–9/100 μm across the cortex. Most glutamic acid decarboxylase-positive neuronal perikarya were intensely immunostained, and the dendrites of the medium-sized and large neurons were traced as far as 50–75 μm beyond their initial branching point. Glutamic acid decarboxylase-positive puncta also had variable shapes. Both small, fine puncta (< 0.5 μm in diameter) and larger, coarser ones (>1.5 μm in diameter) were present, though the former were much more common. In traverses from the pia to the layer II border, the puncta average about 40/100 μm2 (range: 20–80), and the shape of individual pia-layer II traverses is multipeaked, often with a slight trough at −80μm depth, then rising slowly in number toward layer II. These anatomical arrangements may have physiological consequences for cortical functional organization: (i) the GABAergic influences of layer I cells are directed laterally, toward other layer I neurons, or at the apical dendritic arbors of deep-lying commissural or corticofugal neurons, whose activity might be modulated by GABAergic layer I influences; (ii) the axons of layer II glutamic acid decarboxylase-positive neurons or of corticocortical interneurons may affect layer I. While many different transmitter molecules have been identified in layer I, it is probable that their activity influences a largely GABAergic neuronal population." @default.
- W2022638063 created "2016-06-24" @default.
- W2022638063 creator A5041904681 @default.
- W2022638063 creator A5080297276 @default.
- W2022638063 date "1989-01-01" @default.
- W2022638063 modified "2023-10-06" @default.
- W2022638063 title "Populations of GABAergic neurons and axons in layer I of rat auditory cortex" @default.
- W2022638063 cites W1552841334 @default.
- W2022638063 cites W1792154407 @default.
- W2022638063 cites W1836312020 @default.
- W2022638063 cites W1952172782 @default.
- W2022638063 cites W1966253466 @default.
- W2022638063 cites W1968165361 @default.
- W2022638063 cites W1976199729 @default.
- W2022638063 cites W1977097525 @default.
- W2022638063 cites W1979926883 @default.
- W2022638063 cites W1981784501 @default.
- W2022638063 cites W1985431179 @default.
- W2022638063 cites W1988522022 @default.
- W2022638063 cites W1990139401 @default.
- W2022638063 cites W1990529443 @default.
- W2022638063 cites W1990735176 @default.
- W2022638063 cites W1994873982 @default.
- W2022638063 cites W1996073631 @default.
- W2022638063 cites W1997462772 @default.
- W2022638063 cites W2002277023 @default.
- W2022638063 cites W2004259765 @default.
- W2022638063 cites W2005598371 @default.
- W2022638063 cites W2007561632 @default.
- W2022638063 cites W2009131897 @default.
- W2022638063 cites W2009767236 @default.
- W2022638063 cites W2010615712 @default.
- W2022638063 cites W2015622152 @default.
- W2022638063 cites W2015665627 @default.
- W2022638063 cites W2019145410 @default.
- W2022638063 cites W2019402991 @default.
- W2022638063 cites W2020227191 @default.
- W2022638063 cites W2021791480 @default.
- W2022638063 cites W2022888299 @default.
- W2022638063 cites W2023331405 @default.
- W2022638063 cites W2030697268 @default.
- W2022638063 cites W2030752387 @default.
- W2022638063 cites W2034120829 @default.
- W2022638063 cites W2039741199 @default.
- W2022638063 cites W2047553475 @default.
- W2022638063 cites W2047729640 @default.
- W2022638063 cites W2048145310 @default.
- W2022638063 cites W2062413613 @default.
- W2022638063 cites W2063104388 @default.
- W2022638063 cites W2066938409 @default.
- W2022638063 cites W2069117191 @default.
- W2022638063 cites W2073441978 @default.
- W2022638063 cites W2074405242 @default.
- W2022638063 cites W2075290922 @default.
- W2022638063 cites W2077271006 @default.
- W2022638063 cites W2077728073 @default.
- W2022638063 cites W2082281194 @default.
- W2022638063 cites W2083375716 @default.
- W2022638063 cites W2084577485 @default.
- W2022638063 cites W2088776728 @default.
- W2022638063 cites W2097666239 @default.
- W2022638063 cites W2099199353 @default.
- W2022638063 cites W2109343416 @default.
- W2022638063 cites W2111411201 @default.
- W2022638063 cites W2134420935 @default.
- W2022638063 cites W2146508343 @default.
- W2022638063 cites W2148973801 @default.
- W2022638063 cites W2737366357 @default.
- W2022638063 cites W4248143577 @default.
- W2022638063 doi "https://doi.org/10.1016/0306-4522(89)90402-8" @default.
- W2022638063 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/2636704" @default.
- W2022638063 hasPublicationYear "1989" @default.
- W2022638063 type Work @default.
- W2022638063 sameAs 2022638063 @default.
- W2022638063 citedByCount "68" @default.
- W2022638063 countsByYear W20226380632012 @default.
- W2022638063 countsByYear W20226380632013 @default.
- W2022638063 countsByYear W20226380632014 @default.
- W2022638063 countsByYear W20226380632015 @default.
- W2022638063 countsByYear W20226380632016 @default.
- W2022638063 countsByYear W20226380632018 @default.
- W2022638063 countsByYear W20226380632019 @default.
- W2022638063 countsByYear W20226380632020 @default.
- W2022638063 countsByYear W20226380632021 @default.
- W2022638063 countsByYear W20226380632022 @default.
- W2022638063 countsByYear W20226380632023 @default.
- W2022638063 crossrefType "journal-article" @default.
- W2022638063 hasAuthorship W2022638063A5041904681 @default.
- W2022638063 hasAuthorship W2022638063A5080297276 @default.
- W2022638063 hasConcept C169760540 @default.
- W2022638063 hasConcept C17077164 @default.
- W2022638063 hasConcept C181199279 @default.
- W2022638063 hasConcept C185592680 @default.
- W2022638063 hasConcept C203014093 @default.
- W2022638063 hasConcept C204232928 @default.
- W2022638063 hasConcept C2777348757 @default.
- W2022638063 hasConcept C2778740566 @default.
- W2022638063 hasConcept C2778794669 @default.