Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022644199> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2022644199 abstract "A Bayesian Network (BN) is a graphical model which can be used to represent conditional dependency between random variables, such as diseases and symptoms. A Bayesian Network Classifier (BNC) uses BN to characterize the relationships between attributes and the class labels, where a simplified approach is to employ a conditional independence assumption between attributes and the corresponding class labels, i.e., the Naive Bayes (NB) classification model. One major approach to mitigate NB's primary weakness (the conditional independence assumption) is the attribute weighting, and this type of approach has been proved to be effective for NB with simple structure. However, for weighted BNCs involving complex structures, in which attribute weighting is embedded into the model, there is no existing study on whether the weighting will work for complex BNCs and how effective it will impact on the learning of a given task. In this paper, we first survey several complex structure models for BNCs, and then carry out experimental studies to investigate the effectiveness of the attribute weighting strategies for complex BNCs, with a focus on Hidden Naive Bayes (HNB) and Averaged One-Dependence Estimation (AODE). Our studies use classification accuracy (ACC), area under the ROC curve ranking (AUC), and conditional log likelihood (CLL), as the performance metrics. Experiments and comparisons on 36 benchmark data sets demonstrate that attribute weighting technologies just slightly outperforms unweighted complex BNCs with respect to the ACC and AUC, but significant improvement can be observed using CLL." @default.
- W2022644199 created "2016-06-24" @default.
- W2022644199 creator A5007475662 @default.
- W2022644199 creator A5008056593 @default.
- W2022644199 creator A5038861185 @default.
- W2022644199 creator A5074852078 @default.
- W2022644199 creator A5084641325 @default.
- W2022644199 date "2014-07-01" @default.
- W2022644199 modified "2023-10-18" @default.
- W2022644199 title "Attribute weighting: How and when does it work for Bayesian Network Classification" @default.
- W2022644199 cites W1514907448 @default.
- W2022644199 cites W1527842677 @default.
- W2022644199 cites W1559060276 @default.
- W2022644199 cites W1560107318 @default.
- W2022644199 cites W1583700199 @default.
- W2022644199 cites W1808644423 @default.
- W2022644199 cites W1817561967 @default.
- W2022644199 cites W1853307972 @default.
- W2022644199 cites W1906182963 @default.
- W2022644199 cites W1912982817 @default.
- W2022644199 cites W1971039378 @default.
- W2022644199 cites W1976019979 @default.
- W2022644199 cites W2019439081 @default.
- W2022644199 cites W2023003462 @default.
- W2022644199 cites W2027287130 @default.
- W2022644199 cites W2066446909 @default.
- W2022644199 cites W2077194953 @default.
- W2022644199 cites W2108626773 @default.
- W2022644199 cites W2111574971 @default.
- W2022644199 cites W2137587467 @default.
- W2022644199 cites W2155912412 @default.
- W2022644199 cites W2172238468 @default.
- W2022644199 doi "https://doi.org/10.1109/ijcnn.2014.6889536" @default.
- W2022644199 hasPublicationYear "2014" @default.
- W2022644199 type Work @default.
- W2022644199 sameAs 2022644199 @default.
- W2022644199 citedByCount "6" @default.
- W2022644199 countsByYear W20226441992015 @default.
- W2022644199 countsByYear W20226441992017 @default.
- W2022644199 countsByYear W20226441992018 @default.
- W2022644199 countsByYear W20226441992019 @default.
- W2022644199 countsByYear W20226441992021 @default.
- W2022644199 crossrefType "proceedings-article" @default.
- W2022644199 hasAuthorship W2022644199A5007475662 @default.
- W2022644199 hasAuthorship W2022644199A5008056593 @default.
- W2022644199 hasAuthorship W2022644199A5038861185 @default.
- W2022644199 hasAuthorship W2022644199A5074852078 @default.
- W2022644199 hasAuthorship W2022644199A5084641325 @default.
- W2022644199 hasConcept C107673813 @default.
- W2022644199 hasConcept C119857082 @default.
- W2022644199 hasConcept C12267149 @default.
- W2022644199 hasConcept C124101348 @default.
- W2022644199 hasConcept C126838900 @default.
- W2022644199 hasConcept C13280743 @default.
- W2022644199 hasConcept C153180895 @default.
- W2022644199 hasConcept C154945302 @default.
- W2022644199 hasConcept C183115368 @default.
- W2022644199 hasConcept C185798385 @default.
- W2022644199 hasConcept C189430467 @default.
- W2022644199 hasConcept C205649164 @default.
- W2022644199 hasConcept C33724603 @default.
- W2022644199 hasConcept C41008148 @default.
- W2022644199 hasConcept C52001869 @default.
- W2022644199 hasConcept C71924100 @default.
- W2022644199 hasConcept C79772020 @default.
- W2022644199 hasConceptScore W2022644199C107673813 @default.
- W2022644199 hasConceptScore W2022644199C119857082 @default.
- W2022644199 hasConceptScore W2022644199C12267149 @default.
- W2022644199 hasConceptScore W2022644199C124101348 @default.
- W2022644199 hasConceptScore W2022644199C126838900 @default.
- W2022644199 hasConceptScore W2022644199C13280743 @default.
- W2022644199 hasConceptScore W2022644199C153180895 @default.
- W2022644199 hasConceptScore W2022644199C154945302 @default.
- W2022644199 hasConceptScore W2022644199C183115368 @default.
- W2022644199 hasConceptScore W2022644199C185798385 @default.
- W2022644199 hasConceptScore W2022644199C189430467 @default.
- W2022644199 hasConceptScore W2022644199C205649164 @default.
- W2022644199 hasConceptScore W2022644199C33724603 @default.
- W2022644199 hasConceptScore W2022644199C41008148 @default.
- W2022644199 hasConceptScore W2022644199C52001869 @default.
- W2022644199 hasConceptScore W2022644199C71924100 @default.
- W2022644199 hasConceptScore W2022644199C79772020 @default.
- W2022644199 hasLocation W20226441991 @default.
- W2022644199 hasOpenAccess W2022644199 @default.
- W2022644199 hasPrimaryLocation W20226441991 @default.
- W2022644199 hasRelatedWork W1545349145 @default.
- W2022644199 hasRelatedWork W163054539 @default.
- W2022644199 hasRelatedWork W1943768448 @default.
- W2022644199 hasRelatedWork W1956930971 @default.
- W2022644199 hasRelatedWork W209492218 @default.
- W2022644199 hasRelatedWork W2108626773 @default.
- W2022644199 hasRelatedWork W2147409005 @default.
- W2022644199 hasRelatedWork W2750028895 @default.
- W2022644199 hasRelatedWork W2903577688 @default.
- W2022644199 hasRelatedWork W2963331194 @default.
- W2022644199 isParatext "false" @default.
- W2022644199 isRetracted "false" @default.
- W2022644199 magId "2022644199" @default.
- W2022644199 workType "article" @default.