Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022651636> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2022651636 endingPage "35" @default.
- W2022651636 startingPage "22" @default.
- W2022651636 abstract "The large size of data sets generated using hyperspectral imaging techniques significantly increases both the capability and difficulty of designing detection and classification systems. Of particular interest is the confluence with increasing use of multispectral imaging in machine vision, particularly in the area of food safety inspection. The purpose of this study was to develop a robust method for selecting one or two wavelengths for multispectral detection systems using hyperspectral data. The actual performance of detection algorithms in terms of true positives and false positives was used as optimization criteria. Detection of fecal contamination on apples is an important health safety issue. Prior observations suggest reflectance or fluorescence imaging in the visible to near-infrared can be used to detect such contamination. For this study, 1:2, 1:20, and 1:200 dilutions of dairy feces were applied to 100 Golden and 100 Red Delicious apples. Apples were imaged using a hyperspectral system, and a uniform power transformation was used to reduce inter-apple intensity variability. Detection was accomplished by applying a binary threshold to transformed single wavelength images and images construct using ratios or differences of images at two different wavelengths. Optimization criteria allowed for a maximum of three false positives. For reflectance imaging, maximum detection rates for 1:20 dilution spots on Golden and Red Delicious apples images were 100% and 62.5% using R816 − R697 and R784 − R738, respectively. For fluorescence imaging, maximum detection rates for 1:200 dilution spots on Golden and Red Delicious apples were 97.9% and 58.3% using F665/F602 and F647/F482, respectively. In all case, more concentrated dilution spots were detected at 100%. Maximum detection rates for Red Delicious apples required use of a Prewitt edge-detection filter. In comparison, tests of wavelengths and algorithms identified in previous studies using statistical methods such as principal component analysis produced lower detection rates, mainly due to problems with false positives. The procedures used for developing detection algorithms are not specific to detecting feces on apples, and it is theoretically easy to extend the results to detection schemes involving many wavelengths. The problem is the classical dilemma of rapidly increasing computational time. Still, given the costs of thoroughly testing a candidate detection algorithm, the time maybe warranted. Furthermore, as machine vision systems are often limited to one or two wavelengths due to practical considerations including cost, exhaustive search algorithms based-on optimizing the output of candidate detection algorithms should be cost-effective." @default.
- W2022651636 created "2016-06-24" @default.
- W2022651636 creator A5006660069 @default.
- W2022651636 creator A5048177489 @default.
- W2022651636 creator A5071831653 @default.
- W2022651636 creator A5088984018 @default.
- W2022651636 date "2006-10-01" @default.
- W2022651636 modified "2023-10-18" @default.
- W2022651636 title "Systematic approach for using hyperspectral imaging data to develop multispectral imagining systems: Detection of feces on apples" @default.
- W2022651636 cites W2014801032 @default.
- W2022651636 cites W2056923270 @default.
- W2022651636 cites W2064336916 @default.
- W2022651636 cites W2078296814 @default.
- W2022651636 cites W2079972759 @default.
- W2022651636 cites W2090425533 @default.
- W2022651636 cites W2095655760 @default.
- W2022651636 cites W2103444887 @default.
- W2022651636 cites W2104817677 @default.
- W2022651636 cites W2127371720 @default.
- W2022651636 cites W2157327023 @default.
- W2022651636 doi "https://doi.org/10.1016/j.compag.2006.06.002" @default.
- W2022651636 hasPublicationYear "2006" @default.
- W2022651636 type Work @default.
- W2022651636 sameAs 2022651636 @default.
- W2022651636 citedByCount "36" @default.
- W2022651636 countsByYear W20226516362012 @default.
- W2022651636 countsByYear W20226516362013 @default.
- W2022651636 countsByYear W20226516362014 @default.
- W2022651636 countsByYear W20226516362015 @default.
- W2022651636 countsByYear W20226516362016 @default.
- W2022651636 countsByYear W20226516362017 @default.
- W2022651636 countsByYear W20226516362018 @default.
- W2022651636 countsByYear W20226516362019 @default.
- W2022651636 countsByYear W20226516362020 @default.
- W2022651636 countsByYear W20226516362022 @default.
- W2022651636 crossrefType "journal-article" @default.
- W2022651636 hasAuthorship W2022651636A5006660069 @default.
- W2022651636 hasAuthorship W2022651636A5048177489 @default.
- W2022651636 hasAuthorship W2022651636A5071831653 @default.
- W2022651636 hasAuthorship W2022651636A5088984018 @default.
- W2022651636 hasConcept C153180895 @default.
- W2022651636 hasConcept C154945302 @default.
- W2022651636 hasConcept C159078339 @default.
- W2022651636 hasConcept C173163844 @default.
- W2022651636 hasConcept C205649164 @default.
- W2022651636 hasConcept C31972630 @default.
- W2022651636 hasConcept C41008148 @default.
- W2022651636 hasConcept C62649853 @default.
- W2022651636 hasConcept C64869954 @default.
- W2022651636 hasConceptScore W2022651636C153180895 @default.
- W2022651636 hasConceptScore W2022651636C154945302 @default.
- W2022651636 hasConceptScore W2022651636C159078339 @default.
- W2022651636 hasConceptScore W2022651636C173163844 @default.
- W2022651636 hasConceptScore W2022651636C205649164 @default.
- W2022651636 hasConceptScore W2022651636C31972630 @default.
- W2022651636 hasConceptScore W2022651636C41008148 @default.
- W2022651636 hasConceptScore W2022651636C62649853 @default.
- W2022651636 hasConceptScore W2022651636C64869954 @default.
- W2022651636 hasIssue "1" @default.
- W2022651636 hasLocation W20226516361 @default.
- W2022651636 hasOpenAccess W2022651636 @default.
- W2022651636 hasPrimaryLocation W20226516361 @default.
- W2022651636 hasRelatedWork W1552304540 @default.
- W2022651636 hasRelatedWork W1595535338 @default.
- W2022651636 hasRelatedWork W2032332878 @default.
- W2022651636 hasRelatedWork W2039331518 @default.
- W2022651636 hasRelatedWork W2046570986 @default.
- W2022651636 hasRelatedWork W2138205097 @default.
- W2022651636 hasRelatedWork W2540644541 @default.
- W2022651636 hasRelatedWork W2612882618 @default.
- W2022651636 hasRelatedWork W2776398399 @default.
- W2022651636 hasRelatedWork W3169727911 @default.
- W2022651636 hasVolume "54" @default.
- W2022651636 isParatext "false" @default.
- W2022651636 isRetracted "false" @default.
- W2022651636 magId "2022651636" @default.
- W2022651636 workType "article" @default.