Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022668014> ?p ?o ?g. }
- W2022668014 endingPage "34" @default.
- W2022668014 startingPage "25" @default.
- W2022668014 abstract "Sorption mechanisms of heavy metals at the mineral/water interface are largely controlled by the type and number of sorption sites on the mineral surfaces. However, in the case of layered manganese oxides, with a highly reactive interlayer (internal) region, the effects of variable substructures on their sorption sites, sorption capacities and characteristics are still obscure. Sorption experiments at pH 4.5 combined with powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were performed to investigate the sorption characteristics and mechanisms of Pb2 +, Cu2 +, Zn2 + and Cd2 + onto hexagonal birnessites with various Mn average oxidation states (AOS), together with detailed physicochemical characterizations of the birnessites. The results show that a decrease in Mn AOS of birnessites decreased considerably the sorption capacity for heavy metals, despite the fact that the specific surface area increased almost linearly. The sorption capacity for any given birnessite followed the order Pb2 + ≫ Cu2 + > Zn2 + > Cd2 +; for Pb2 + ranging from 1.6 to 3.9 times greater than those of the other metals, while Cu2 +, Zn2 +, and Cd2 + sorbed with similar maxima among them. The large differences between maximum Pb2 + sorption and that of the other metals were approximately of the same absolute magnitude regardless of the specific birnessites compared, as opposed to decreasing in equal relative proportions as would be expected in a homogeneous-site model. This evidence agrees well with previous work on hexagonal birnessites that proposes a general two-site structural model for metal-binding to birnessite, and the sorption maxima differences obtained in this work were used to estimate the concentration of low-energy and high-energy binding sites in the different birnessites. Relating these to previous structural information allowed us to assign these site types roughly to particle edge sites and vacancy sites at interlayers, respectively. In this manner, we found that for the birnessite containing exclusively Mn(IV), the contributions of edge sites and interlayer sites to total Pb2 + sorption were approximately equivalent; but as Mn AOS decreased, the contribution of vacant sites at interlayers sensibly decreased, probably through the increasing presence of layer Mn(III) at the expense of vacant sites. The results presented here of highly distinctive affinity site types are valuable for a fundamental understanding of the behavior of birnessites towards heavy metal sorption, which in turn contributes both to predictions of the geochemical behavior of birnessites and to applications for remediation schemes of metal-contaminated aqueous environments." @default.
- W2022668014 created "2016-06-24" @default.
- W2022668014 creator A5003642180 @default.
- W2022668014 creator A5040939816 @default.
- W2022668014 creator A5050566290 @default.
- W2022668014 creator A5067786421 @default.
- W2022668014 creator A5089431390 @default.
- W2022668014 date "2012-01-01" @default.
- W2022668014 modified "2023-10-17" @default.
- W2022668014 title "Sorption behavior of heavy metals on birnessite: Relationship with its Mn average oxidation state and implications for types of sorption sites" @default.
- W2022668014 cites W1980361407 @default.
- W2022668014 cites W1982662554 @default.
- W2022668014 cites W1983823156 @default.
- W2022668014 cites W1986007656 @default.
- W2022668014 cites W1987094455 @default.
- W2022668014 cites W1988960405 @default.
- W2022668014 cites W1994740770 @default.
- W2022668014 cites W2009146224 @default.
- W2022668014 cites W2012621192 @default.
- W2022668014 cites W2030314448 @default.
- W2022668014 cites W2032874417 @default.
- W2022668014 cites W2039176365 @default.
- W2022668014 cites W2045226822 @default.
- W2022668014 cites W2049640245 @default.
- W2022668014 cites W2052394654 @default.
- W2022668014 cites W2057104903 @default.
- W2022668014 cites W2060429741 @default.
- W2022668014 cites W2063570435 @default.
- W2022668014 cites W2066302239 @default.
- W2022668014 cites W2073216371 @default.
- W2022668014 cites W2083876036 @default.
- W2022668014 cites W2086694157 @default.
- W2022668014 cites W2098107208 @default.
- W2022668014 cites W2110221529 @default.
- W2022668014 cites W2110850807 @default.
- W2022668014 cites W2122574387 @default.
- W2022668014 cites W2124007521 @default.
- W2022668014 cites W2125667611 @default.
- W2022668014 cites W2149421142 @default.
- W2022668014 cites W2167828944 @default.
- W2022668014 cites W2170424371 @default.
- W2022668014 cites W2303609792 @default.
- W2022668014 cites W2306153471 @default.
- W2022668014 cites W2323452019 @default.
- W2022668014 cites W2404898580 @default.
- W2022668014 cites W4233806409 @default.
- W2022668014 cites W4241755831 @default.
- W2022668014 doi "https://doi.org/10.1016/j.chemgeo.2011.11.001" @default.
- W2022668014 hasPublicationYear "2012" @default.
- W2022668014 type Work @default.
- W2022668014 sameAs 2022668014 @default.
- W2022668014 citedByCount "155" @default.
- W2022668014 countsByYear W20226680142012 @default.
- W2022668014 countsByYear W20226680142013 @default.
- W2022668014 countsByYear W20226680142014 @default.
- W2022668014 countsByYear W20226680142015 @default.
- W2022668014 countsByYear W20226680142016 @default.
- W2022668014 countsByYear W20226680142017 @default.
- W2022668014 countsByYear W20226680142018 @default.
- W2022668014 countsByYear W20226680142019 @default.
- W2022668014 countsByYear W20226680142020 @default.
- W2022668014 countsByYear W20226680142021 @default.
- W2022668014 countsByYear W20226680142022 @default.
- W2022668014 countsByYear W20226680142023 @default.
- W2022668014 crossrefType "journal-article" @default.
- W2022668014 hasAuthorship W2022668014A5003642180 @default.
- W2022668014 hasAuthorship W2022668014A5040939816 @default.
- W2022668014 hasAuthorship W2022668014A5050566290 @default.
- W2022668014 hasAuthorship W2022668014A5067786421 @default.
- W2022668014 hasAuthorship W2022668014A5089431390 @default.
- W2022668014 hasConcept C107872376 @default.
- W2022668014 hasConcept C127413603 @default.
- W2022668014 hasConcept C147789679 @default.
- W2022668014 hasConcept C150394285 @default.
- W2022668014 hasConcept C175708663 @default.
- W2022668014 hasConcept C178790620 @default.
- W2022668014 hasConcept C179104552 @default.
- W2022668014 hasConcept C185592680 @default.
- W2022668014 hasConcept C192562407 @default.
- W2022668014 hasConcept C2778591166 @default.
- W2022668014 hasConcept C2779471666 @default.
- W2022668014 hasConcept C2993225395 @default.
- W2022668014 hasConcept C42360764 @default.
- W2022668014 hasConcept C528890316 @default.
- W2022668014 hasConcept C544153396 @default.
- W2022668014 hasConcept C58445606 @default.
- W2022668014 hasConceptScore W2022668014C107872376 @default.
- W2022668014 hasConceptScore W2022668014C127413603 @default.
- W2022668014 hasConceptScore W2022668014C147789679 @default.
- W2022668014 hasConceptScore W2022668014C150394285 @default.
- W2022668014 hasConceptScore W2022668014C175708663 @default.
- W2022668014 hasConceptScore W2022668014C178790620 @default.
- W2022668014 hasConceptScore W2022668014C179104552 @default.
- W2022668014 hasConceptScore W2022668014C185592680 @default.
- W2022668014 hasConceptScore W2022668014C192562407 @default.
- W2022668014 hasConceptScore W2022668014C2778591166 @default.
- W2022668014 hasConceptScore W2022668014C2779471666 @default.
- W2022668014 hasConceptScore W2022668014C2993225395 @default.