Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022671909> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2022671909 endingPage "677" @default.
- W2022671909 startingPage "649" @default.
- W2022671909 abstract "Let p∈[1,2) and α, ε>0 be such that α∈(p−1,1−ε). Let V, W be two Euclidean spaces. Let Ωp(V) be the space of continuous paths taking values in V and with finite p-variation. Let k∈N and f:W→Hom(V,W) be a Lip(k+α+ε) map in the sense of E.M. Stein [Stein E.M., Singular integrals and differentiability properties of functions, Princeton Mathematical Series, vol. 30, Princeton University Press, Princeton, NJ, 1970]. In this paper we prove that the Itô map, defined by I(x)=y, is a local Ck,ε1+ε map (in the sense of Fréchet) between Ωp(V) and Ωp(W), where y is the solution to the differential equationdyt=f(yt)dxt,y0=a.This result strengthens the continuity results and Lipschitz continuity results in [Lyons T., Differential equations driven by rough signals. I. An extension of an inequality of L.C. Young, Math. Res. Lett. 1 (4) (1994) 451–464; Lyons T., Qian Z., System Control and Rough Paths, Oxford Mathematical Monographs, Clarendon Press, Oxford, 2002] particularly to the non-integer case. It allows us to construct the fractional like Brownian motion and infinite dimensional Brownian motions on the space of paths with finite p-variation. As a corollary in the particular case where p=1, we obtain that the development from the space of finite 1-variation paths on Rd to the space of finite 1-variation paths on a d-dimensional compact Riemannian manifold is a smooth bijection. Soient p∈[1,2), et α tel que α∈(p−1,1−ε). Soient V et W deux espaces euclidiens. On désigne par Ωp(V) l'espace des chemins continus à valeurs dans V et de p-variation finie. Soit f:W→Hom(V,W) une application de classe Lip(k+α+ε) au sens de E.M. Stein, avec k∈N et k⩾1. Dans cet article, nous montrons que l'application de Itô I:Ωp(V)→Ωp(W), définie par I(x)=y, où y est la solution de l'équation différentielle suivante :dyt=f(yt)dxt,y0=a,est localement de classe Ck,ε1+ε au sens de Fréchet. Cela nous permet de construire des processus de type mouvement brownien fractionnaire ainsi que des mouvements browniens de dimension infinie sur l'espace des chemins de p-variation finie. Comme corollaire, nous obtenons, dans le cas particulier où p=1, que l'application de développement de l'espace des chemins de 1-variation finie sur Rd dans l'espace des chemins de 1-variation finie sur une variété riemannienne compacte d-dimensionnelle est une bijection régulière." @default.
- W2022671909 created "2016-06-24" @default.
- W2022671909 creator A5033716148 @default.
- W2022671909 creator A5061390923 @default.
- W2022671909 date "2006-07-01" @default.
- W2022671909 modified "2023-09-26" @default.
- W2022671909 title "Smoothness of Itô maps and diffusion processes on path spaces (I)" @default.
- W2022671909 cites W100459338 @default.
- W2022671909 cites W1488877410 @default.
- W2022671909 cites W1491682511 @default.
- W2022671909 cites W1497130870 @default.
- W2022671909 cites W167380816 @default.
- W2022671909 cites W1714229234 @default.
- W2022671909 cites W1971468248 @default.
- W2022671909 cites W1973898185 @default.
- W2022671909 cites W1979283834 @default.
- W2022671909 cites W1983774541 @default.
- W2022671909 cites W1985153458 @default.
- W2022671909 cites W1987593309 @default.
- W2022671909 cites W1988949407 @default.
- W2022671909 cites W1995738788 @default.
- W2022671909 cites W2004095444 @default.
- W2022671909 cites W2005228957 @default.
- W2022671909 cites W2006786310 @default.
- W2022671909 cites W2007631621 @default.
- W2022671909 cites W2012380373 @default.
- W2022671909 cites W2018963294 @default.
- W2022671909 cites W2020972621 @default.
- W2022671909 cites W2021521354 @default.
- W2022671909 cites W2029551684 @default.
- W2022671909 cites W2045992064 @default.
- W2022671909 cites W2056760934 @default.
- W2022671909 cites W2074609195 @default.
- W2022671909 cites W2144031478 @default.
- W2022671909 cites W224030597 @default.
- W2022671909 cites W2272672595 @default.
- W2022671909 cites W2911730943 @default.
- W2022671909 cites W584406610 @default.
- W2022671909 doi "https://doi.org/10.1016/j.ansens.2006.07.001" @default.
- W2022671909 hasPublicationYear "2006" @default.
- W2022671909 type Work @default.
- W2022671909 sameAs 2022671909 @default.
- W2022671909 citedByCount "19" @default.
- W2022671909 countsByYear W20226719092013 @default.
- W2022671909 countsByYear W20226719092015 @default.
- W2022671909 countsByYear W20226719092016 @default.
- W2022671909 countsByYear W20226719092017 @default.
- W2022671909 countsByYear W20226719092018 @default.
- W2022671909 countsByYear W20226719092019 @default.
- W2022671909 countsByYear W20226719092020 @default.
- W2022671909 countsByYear W20226719092021 @default.
- W2022671909 countsByYear W20226719092022 @default.
- W2022671909 crossrefType "journal-article" @default.
- W2022671909 hasAuthorship W2022671909A5033716148 @default.
- W2022671909 hasAuthorship W2022671909A5061390923 @default.
- W2022671909 hasBestOaLocation W20226719092 @default.
- W2022671909 hasConcept C114614502 @default.
- W2022671909 hasConcept C134306372 @default.
- W2022671909 hasConcept C138885662 @default.
- W2022671909 hasConcept C202444582 @default.
- W2022671909 hasConcept C22324862 @default.
- W2022671909 hasConcept C2778572836 @default.
- W2022671909 hasConcept C2779593128 @default.
- W2022671909 hasConcept C33923547 @default.
- W2022671909 hasConcept C41895202 @default.
- W2022671909 hasConceptScore W2022671909C114614502 @default.
- W2022671909 hasConceptScore W2022671909C134306372 @default.
- W2022671909 hasConceptScore W2022671909C138885662 @default.
- W2022671909 hasConceptScore W2022671909C202444582 @default.
- W2022671909 hasConceptScore W2022671909C22324862 @default.
- W2022671909 hasConceptScore W2022671909C2778572836 @default.
- W2022671909 hasConceptScore W2022671909C2779593128 @default.
- W2022671909 hasConceptScore W2022671909C33923547 @default.
- W2022671909 hasConceptScore W2022671909C41895202 @default.
- W2022671909 hasIssue "4" @default.
- W2022671909 hasLocation W20226719091 @default.
- W2022671909 hasLocation W20226719092 @default.
- W2022671909 hasOpenAccess W2022671909 @default.
- W2022671909 hasPrimaryLocation W20226719091 @default.
- W2022671909 hasRelatedWork W1966627654 @default.
- W2022671909 hasRelatedWork W1974373276 @default.
- W2022671909 hasRelatedWork W2023656248 @default.
- W2022671909 hasRelatedWork W2062320368 @default.
- W2022671909 hasRelatedWork W2083605790 @default.
- W2022671909 hasRelatedWork W2083964489 @default.
- W2022671909 hasRelatedWork W2161258280 @default.
- W2022671909 hasRelatedWork W2320471620 @default.
- W2022671909 hasRelatedWork W2335560528 @default.
- W2022671909 hasRelatedWork W2999232206 @default.
- W2022671909 hasVolume "39" @default.
- W2022671909 isParatext "false" @default.
- W2022671909 isRetracted "false" @default.
- W2022671909 magId "2022671909" @default.
- W2022671909 workType "article" @default.