Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022679698> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2022679698 abstract "An optimised inlet air system design is an important factor in the gas turbine (GT) industry. Optimising the design of the air intake system is an increasingly challenging process as both the layout complexity and range of features that can be included in the intake system expands. These may include a combination of insect or trash screens, weather protection and filtration systems, silencers, anti-icing systems, ventilation system off takes and inlet heating or cooling systems for power augmentation. Poor designs can result in inefficient use of these components as well as losses in engine performance due to excessive pressure losses or distortion in the flow entering the gas turbine. High flow distortion, velocity, pressure or temperature, can induce compressor surge and high acromechanical stresses in compressor blades and vanes. In extreme cases this may result in blade or vane failures. Computational Fluid Dynamics (CFD) analysis is a powerful tool for visualisation of the predicted flow through a hypothetical air inlet system prior to manufacture. The CFD output plots include flow streamlines and contours, of pressure, velocity or temperature, at any plane in the model. These enable pressure losses, flow distortion issues, potential recirculation areas and high local velocities within the system to be reviewed. This allows optimisation of the installation design to minimise system pressure loss and flow distortion, both through the components and at the engine interface. This paper, with reference to case studies of gas turbine applications, highlights the impact that CFD analysis can have on the design of intake systems to ensure that the best overall performance is obtained. The process of developing the CFD geometry and how significant features of an installation are modeled is outlined. Environmental and operational conditions, such as cross winds can impact the flow through an intake system; therefore, incorporation of such factors into the model boundary conditions are covered. Typical output metrics from the CFD analysis are shown from selected case studies; total pressure drop and flow distortion at the interface plane between the intake system and gas turbine. The importance of experienced interpretation of the CFD output to define potential intake design modifications to improve system performance is highlighted. In specific cases model testing has been carried out to validate CFD results. Case study examples are used to show the improvements made in air intake performance that contribute to increased operational efficiency of the gas turbine application." @default.
- W2022679698 created "2016-06-24" @default.
- W2022679698 creator A5071596227 @default.
- W2022679698 date "2005-01-01" @default.
- W2022679698 modified "2023-09-26" @default.
- W2022679698 title "The Use of 3D CFD Analysis in the Design of Air Intake Systems as a Visualisation Tool to Optimise Performance in Gas Turbine Applications" @default.
- W2022679698 doi "https://doi.org/10.1115/gt2005-68758" @default.
- W2022679698 hasPublicationYear "2005" @default.
- W2022679698 type Work @default.
- W2022679698 sameAs 2022679698 @default.
- W2022679698 citedByCount "0" @default.
- W2022679698 crossrefType "proceedings-article" @default.
- W2022679698 hasAuthorship W2022679698A5071596227 @default.
- W2022679698 hasConcept C119599485 @default.
- W2022679698 hasConcept C121332964 @default.
- W2022679698 hasConcept C126780896 @default.
- W2022679698 hasConcept C127413603 @default.
- W2022679698 hasConcept C131097465 @default.
- W2022679698 hasConcept C146978453 @default.
- W2022679698 hasConcept C1633027 @default.
- W2022679698 hasConcept C171146098 @default.
- W2022679698 hasConcept C194257627 @default.
- W2022679698 hasConcept C199104240 @default.
- W2022679698 hasConcept C2778449969 @default.
- W2022679698 hasConcept C38349280 @default.
- W2022679698 hasConcept C46362747 @default.
- W2022679698 hasConcept C57879066 @default.
- W2022679698 hasConcept C60439489 @default.
- W2022679698 hasConcept C78519656 @default.
- W2022679698 hasConceptScore W2022679698C119599485 @default.
- W2022679698 hasConceptScore W2022679698C121332964 @default.
- W2022679698 hasConceptScore W2022679698C126780896 @default.
- W2022679698 hasConceptScore W2022679698C127413603 @default.
- W2022679698 hasConceptScore W2022679698C131097465 @default.
- W2022679698 hasConceptScore W2022679698C146978453 @default.
- W2022679698 hasConceptScore W2022679698C1633027 @default.
- W2022679698 hasConceptScore W2022679698C171146098 @default.
- W2022679698 hasConceptScore W2022679698C194257627 @default.
- W2022679698 hasConceptScore W2022679698C199104240 @default.
- W2022679698 hasConceptScore W2022679698C2778449969 @default.
- W2022679698 hasConceptScore W2022679698C38349280 @default.
- W2022679698 hasConceptScore W2022679698C46362747 @default.
- W2022679698 hasConceptScore W2022679698C57879066 @default.
- W2022679698 hasConceptScore W2022679698C60439489 @default.
- W2022679698 hasConceptScore W2022679698C78519656 @default.
- W2022679698 hasLocation W20226796981 @default.
- W2022679698 hasOpenAccess W2022679698 @default.
- W2022679698 hasPrimaryLocation W20226796981 @default.
- W2022679698 hasRelatedWork W1977525579 @default.
- W2022679698 hasRelatedWork W1979014260 @default.
- W2022679698 hasRelatedWork W2064389937 @default.
- W2022679698 hasRelatedWork W2314177806 @default.
- W2022679698 hasRelatedWork W2335741136 @default.
- W2022679698 hasRelatedWork W2393401201 @default.
- W2022679698 hasRelatedWork W2473238526 @default.
- W2022679698 hasRelatedWork W2524151054 @default.
- W2022679698 hasRelatedWork W2793959830 @default.
- W2022679698 hasRelatedWork W4236341315 @default.
- W2022679698 isParatext "false" @default.
- W2022679698 isRetracted "false" @default.
- W2022679698 magId "2022679698" @default.
- W2022679698 workType "article" @default.