Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022691337> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2022691337 endingPage "824" @default.
- W2022691337 startingPage "818" @default.
- W2022691337 abstract "In this paper we used two new features i.e. T-wave integral and total integral as extracted feature from one cycle of normal and patient ECG signals to detection and localization of myocardial infarction (MI) in left ventricle of heart. In our previous work we used some features of body surface potential map data for this aim. But we know the standard ECG is more popular, so we focused our detection and localization of MI on standard ECG. We use the T-wave integral because this feature is important impression of T-wave in MI. The second feature in this research is total integral of one ECG cycle, because we believe that the MI affects the morphology of the ECG signal which leads to total integral changes. We used some pattern recognition method such as Artificial Neural Network (ANN) to detect and localize the MI, because this method has very good accuracy for classification of normal signal and abnormal signal. We used one type of Radial Basis Function (RBF) that called Probabilistic Neural Network (PNN) because of its nonlinearity property, and used other classifier such as k-Nearest Neighbors (KNN), Multilayer Perceptron (MLP) and Naive Bayes Classification. We used PhysioNet database as our training and test data. We reached over 76% for accuracy in test data for localization and over 94% for detection of MI. Main advantages of our method are simplicity and its good accuracy. Also we can improve the accuracy of classification by adding more features in this method. A simple method based on using only two features which were extracted from standard ECG is presented and has good accuracy in MI localization." @default.
- W2022691337 created "2016-06-24" @default.
- W2022691337 creator A5013789320 @default.
- W2022691337 creator A5032516148 @default.
- W2022691337 creator A5039701676 @default.
- W2022691337 date "2014-01-01" @default.
- W2022691337 modified "2023-10-01" @default.
- W2022691337 title "A New Pattern Recognition Method for Detection and Localization of Myocardial Infarction Using T-Wave Integral and Total Integral as Extracted Features from One Cycle of ECG Signal" @default.
- W2022691337 cites W2041110545 @default.
- W2022691337 cites W2054769628 @default.
- W2022691337 cites W2064880724 @default.
- W2022691337 cites W2088914667 @default.
- W2022691337 cites W2130121288 @default.
- W2022691337 cites W2132401137 @default.
- W2022691337 cites W2132904166 @default.
- W2022691337 doi "https://doi.org/10.4236/jbise.2014.710081" @default.
- W2022691337 hasPublicationYear "2014" @default.
- W2022691337 type Work @default.
- W2022691337 sameAs 2022691337 @default.
- W2022691337 citedByCount "79" @default.
- W2022691337 countsByYear W20226913372016 @default.
- W2022691337 countsByYear W20226913372017 @default.
- W2022691337 countsByYear W20226913372018 @default.
- W2022691337 countsByYear W20226913372019 @default.
- W2022691337 countsByYear W20226913372020 @default.
- W2022691337 countsByYear W20226913372021 @default.
- W2022691337 countsByYear W20226913372022 @default.
- W2022691337 countsByYear W20226913372023 @default.
- W2022691337 crossrefType "journal-article" @default.
- W2022691337 hasAuthorship W2022691337A5013789320 @default.
- W2022691337 hasAuthorship W2022691337A5032516148 @default.
- W2022691337 hasAuthorship W2022691337A5039701676 @default.
- W2022691337 hasBestOaLocation W20226913371 @default.
- W2022691337 hasConcept C12267149 @default.
- W2022691337 hasConcept C138885662 @default.
- W2022691337 hasConcept C153180895 @default.
- W2022691337 hasConcept C154945302 @default.
- W2022691337 hasConcept C2776401178 @default.
- W2022691337 hasConcept C41008148 @default.
- W2022691337 hasConcept C41895202 @default.
- W2022691337 hasConcept C50644808 @default.
- W2022691337 hasConcept C52001869 @default.
- W2022691337 hasConcept C52622490 @default.
- W2022691337 hasConcept C60908668 @default.
- W2022691337 hasConcept C95623464 @default.
- W2022691337 hasConceptScore W2022691337C12267149 @default.
- W2022691337 hasConceptScore W2022691337C138885662 @default.
- W2022691337 hasConceptScore W2022691337C153180895 @default.
- W2022691337 hasConceptScore W2022691337C154945302 @default.
- W2022691337 hasConceptScore W2022691337C2776401178 @default.
- W2022691337 hasConceptScore W2022691337C41008148 @default.
- W2022691337 hasConceptScore W2022691337C41895202 @default.
- W2022691337 hasConceptScore W2022691337C50644808 @default.
- W2022691337 hasConceptScore W2022691337C52001869 @default.
- W2022691337 hasConceptScore W2022691337C52622490 @default.
- W2022691337 hasConceptScore W2022691337C60908668 @default.
- W2022691337 hasConceptScore W2022691337C95623464 @default.
- W2022691337 hasIssue "10" @default.
- W2022691337 hasLocation W20226913371 @default.
- W2022691337 hasLocation W20226913372 @default.
- W2022691337 hasOpenAccess W2022691337 @default.
- W2022691337 hasPrimaryLocation W20226913371 @default.
- W2022691337 hasRelatedWork W1902766772 @default.
- W2022691337 hasRelatedWork W2022996092 @default.
- W2022691337 hasRelatedWork W2149078746 @default.
- W2022691337 hasRelatedWork W2546942002 @default.
- W2022691337 hasRelatedWork W2547131314 @default.
- W2022691337 hasRelatedWork W2784352036 @default.
- W2022691337 hasRelatedWork W2807311372 @default.
- W2022691337 hasRelatedWork W2905846897 @default.
- W2022691337 hasRelatedWork W3203501097 @default.
- W2022691337 hasRelatedWork W4367598285 @default.
- W2022691337 hasVolume "07" @default.
- W2022691337 isParatext "false" @default.
- W2022691337 isRetracted "false" @default.
- W2022691337 magId "2022691337" @default.
- W2022691337 workType "article" @default.