Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022693238> ?p ?o ?g. }
- W2022693238 endingPage "253" @default.
- W2022693238 startingPage "253" @default.
- W2022693238 abstract "It is shown that the class of functions satisfying Ju(x, t)l < Mealxl forms a uniqueness class for the Cauchy problem for pseudoparabolic equations. The surprising fact is that, unlike the case of parabolic equations, the constant a is not arbitrary but depends on the coefficients of the equation. Introduction. This paper is concerned with determining the uniqueness class for the Cauchy problem for the pseudoparabolic equation Lu Mu, c(x)u, + Mu = 0. (1.1) Here M is an elliptic partial differential operator of second order and c(x) is a positive coefficient. All coefficients are assumed to be bounded. Since solutions of (1.1) are closely related to solutions of the associated parabolic equation Pu = C(x)u, Mu = 0 (1.2) (cf. [1], [3]), one would expect a similarity in the uniqueness class for the Cauchy problem, that is a solution that takes prescribed values on the axis t = 0. For the parabolic equation if Iu(x, t)I < Ce'X for arbitrary fixed a, then there is a unique solution for the Cauchy problem. For equation (1.1) we shall see that the uniqueness class consists of functions of first order growth, that is, Iu(x, t)I < ceaIx1. The surprising fact is that a in this case is no longer arbitrary but depends on the operator L. More specifically it depends on the lower bound for the coefficient c(x) and the modulus of ellipticity of the operator M. We shall illustrate this with an example, deferring the statement of the main theorem until the next section. EXAMPLE. There is a nontrivial solution to the Cauchy problem, UxxtUt + UXX =0, (1.3) U(X, 0) = 0, (1.4) that satisfies the estimate Iu(x, t)I < e V IxI* We let" @default.
- W2022693238 created "2016-06-24" @default.
- W2022693238 creator A5088154743 @default.
- W2022693238 date "1979-02-01" @default.
- W2022693238 modified "2023-09-22" @default.
- W2022693238 title "The uniqueness class for the Cauchy problem for pseudoparabolic equations" @default.
- W2022693238 cites W1493701696 @default.
- W2022693238 cites W2039249562 @default.
- W2022693238 cites W2064504597 @default.
- W2022693238 doi "https://doi.org/10.1090/s0002-9939-1979-0537083-3" @default.
- W2022693238 hasPublicationYear "1979" @default.
- W2022693238 type Work @default.
- W2022693238 sameAs 2022693238 @default.
- W2022693238 citedByCount "14" @default.
- W2022693238 countsByYear W20226932382012 @default.
- W2022693238 countsByYear W20226932382014 @default.
- W2022693238 countsByYear W20226932382017 @default.
- W2022693238 countsByYear W20226932382018 @default.
- W2022693238 countsByYear W20226932382020 @default.
- W2022693238 crossrefType "journal-article" @default.
- W2022693238 hasAuthorship W2022693238A5088154743 @default.
- W2022693238 hasBestOaLocation W20226932381 @default.
- W2022693238 hasConcept C10138342 @default.
- W2022693238 hasConcept C104317684 @default.
- W2022693238 hasConcept C134306372 @default.
- W2022693238 hasConcept C153635880 @default.
- W2022693238 hasConcept C154945302 @default.
- W2022693238 hasConcept C158448853 @default.
- W2022693238 hasConcept C162324750 @default.
- W2022693238 hasConcept C17020691 @default.
- W2022693238 hasConcept C182306322 @default.
- W2022693238 hasConcept C185592680 @default.
- W2022693238 hasConcept C186867907 @default.
- W2022693238 hasConcept C199360897 @default.
- W2022693238 hasConcept C202444582 @default.
- W2022693238 hasConcept C26955809 @default.
- W2022693238 hasConcept C2777021972 @default.
- W2022693238 hasConcept C2777027219 @default.
- W2022693238 hasConcept C2777212361 @default.
- W2022693238 hasConcept C33923547 @default.
- W2022693238 hasConcept C34388435 @default.
- W2022693238 hasConcept C41008148 @default.
- W2022693238 hasConcept C54067925 @default.
- W2022693238 hasConcept C55493867 @default.
- W2022693238 hasConcept C78045399 @default.
- W2022693238 hasConcept C86339819 @default.
- W2022693238 hasConceptScore W2022693238C10138342 @default.
- W2022693238 hasConceptScore W2022693238C104317684 @default.
- W2022693238 hasConceptScore W2022693238C134306372 @default.
- W2022693238 hasConceptScore W2022693238C153635880 @default.
- W2022693238 hasConceptScore W2022693238C154945302 @default.
- W2022693238 hasConceptScore W2022693238C158448853 @default.
- W2022693238 hasConceptScore W2022693238C162324750 @default.
- W2022693238 hasConceptScore W2022693238C17020691 @default.
- W2022693238 hasConceptScore W2022693238C182306322 @default.
- W2022693238 hasConceptScore W2022693238C185592680 @default.
- W2022693238 hasConceptScore W2022693238C186867907 @default.
- W2022693238 hasConceptScore W2022693238C199360897 @default.
- W2022693238 hasConceptScore W2022693238C202444582 @default.
- W2022693238 hasConceptScore W2022693238C26955809 @default.
- W2022693238 hasConceptScore W2022693238C2777021972 @default.
- W2022693238 hasConceptScore W2022693238C2777027219 @default.
- W2022693238 hasConceptScore W2022693238C2777212361 @default.
- W2022693238 hasConceptScore W2022693238C33923547 @default.
- W2022693238 hasConceptScore W2022693238C34388435 @default.
- W2022693238 hasConceptScore W2022693238C41008148 @default.
- W2022693238 hasConceptScore W2022693238C54067925 @default.
- W2022693238 hasConceptScore W2022693238C55493867 @default.
- W2022693238 hasConceptScore W2022693238C78045399 @default.
- W2022693238 hasConceptScore W2022693238C86339819 @default.
- W2022693238 hasIssue "2" @default.
- W2022693238 hasLocation W20226932381 @default.
- W2022693238 hasOpenAccess W2022693238 @default.
- W2022693238 hasPrimaryLocation W20226932381 @default.
- W2022693238 hasRelatedWork W121291272 @default.
- W2022693238 hasRelatedWork W1970478123 @default.
- W2022693238 hasRelatedWork W1989535321 @default.
- W2022693238 hasRelatedWork W1996583773 @default.
- W2022693238 hasRelatedWork W2011293209 @default.
- W2022693238 hasRelatedWork W2012743948 @default.
- W2022693238 hasRelatedWork W2018886744 @default.
- W2022693238 hasRelatedWork W2039497156 @default.
- W2022693238 hasRelatedWork W2047704039 @default.
- W2022693238 hasRelatedWork W2051359988 @default.
- W2022693238 hasRelatedWork W2057741997 @default.
- W2022693238 hasRelatedWork W2074778555 @default.
- W2022693238 hasRelatedWork W2255359780 @default.
- W2022693238 hasRelatedWork W2257239385 @default.
- W2022693238 hasRelatedWork W2329022896 @default.
- W2022693238 hasRelatedWork W2394174381 @default.
- W2022693238 hasRelatedWork W2782909654 @default.
- W2022693238 hasRelatedWork W2783324477 @default.
- W2022693238 hasRelatedWork W3125971553 @default.
- W2022693238 hasRelatedWork W431132159 @default.
- W2022693238 hasVolume "76" @default.
- W2022693238 isParatext "false" @default.
- W2022693238 isRetracted "false" @default.
- W2022693238 magId "2022693238" @default.