Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022693472> ?p ?o ?g. }
- W2022693472 endingPage "212" @default.
- W2022693472 startingPage "185" @default.
- W2022693472 abstract "We developed a new instrumental approach, termed Supersonic GC-MS, which achieves fast, sensitive, confirmatory and quantitative analysis of a broad range of pesticides in complex agricultural matrices. Our Supersonic GC-MS system is a modification of a bench-top Agilent 6890 GC+5972 MSD with a supersonic molecular beam (SMB) interface and fly-through EI ion source. One of the main advantages of Supersonic GC-MS is an enhanced molecular ion (M+) in the resulting mass spectra. For example, the M+ was observed in all 88 pesticides that we studied using the Supersonic GC-MS whereas only 36 of 63 (57%) pesticides that we investigated in standard GC-MS exhibited a M+. We also found that the degree of matrix interference is exponentially reduced with the fragment mass by about 20-fold per 100 amu increasing mass. The enhancement of the M+ combined with the reduction in matrix background noise permit rapid full scan analysis of a potentially unlimited number of pesticides, unlike selected ion monitoring or MS-MS in which specific conditions are required in segments for targeted pesticides. Furthermore, unlike the case with chemical ionization, EI-SMB-MS spectra still give accurate identification of compounds using common mass spectral libraries. In practice,we found thatlibraries favor mass spectra in which the M+ appears, thus Supersonic GC-MS produced better spectra for compound identification than standard GC-MS. To achieve even lower identification limits, the M+ plus a second major ion (still using full scan data) gives higher signal-to-chemical noise ratios than the traditional 3-ion approach. The replacement of two low-mass ions with the M+ (supersonic two-ions method) results in a significant reduction of matrix interference by a factor of up to 90. Another main advantage of Supersonic GC-MS is its exceptional suitability for fast GC-MS with high carrier gas flow-rate. Fast Supersonic GC-MS was able to analyze thermally labile pesticides, such as carbamates, that are difficult or impossible to analyze in standard GC-MS. Large volume injection using a ChromatoProbe was also demonstrated, in the 6 min analysis of pesticides at 20 ng/g in a spice matrix." @default.
- W2022693472 created "2016-06-24" @default.
- W2022693472 creator A5000246977 @default.
- W2022693472 creator A5030742093 @default.
- W2022693472 creator A5037381514 @default.
- W2022693472 creator A5072372910 @default.
- W2022693472 creator A5090150197 @default.
- W2022693472 date "2002-10-01" @default.
- W2022693472 modified "2023-09-27" @default.
- W2022693472 title "Fast, high-sensitivity, multipesticide analysis of complex mixtures with supersonic gas chromatography–mass spectrometry" @default.
- W2022693472 cites W1123403140 @default.
- W2022693472 cites W1487095166 @default.
- W2022693472 cites W1563420471 @default.
- W2022693472 cites W189514756 @default.
- W2022693472 cites W1971696999 @default.
- W2022693472 cites W1972277088 @default.
- W2022693472 cites W1974073009 @default.
- W2022693472 cites W1989708027 @default.
- W2022693472 cites W1996096600 @default.
- W2022693472 cites W1999398055 @default.
- W2022693472 cites W2001890183 @default.
- W2022693472 cites W2004496597 @default.
- W2022693472 cites W2012255346 @default.
- W2022693472 cites W2015888761 @default.
- W2022693472 cites W2017801472 @default.
- W2022693472 cites W2020794765 @default.
- W2022693472 cites W2021164022 @default.
- W2022693472 cites W2024009744 @default.
- W2022693472 cites W2027274523 @default.
- W2022693472 cites W2030131134 @default.
- W2022693472 cites W2034106404 @default.
- W2022693472 cites W2035060304 @default.
- W2022693472 cites W2035972842 @default.
- W2022693472 cites W2036852578 @default.
- W2022693472 cites W2039487149 @default.
- W2022693472 cites W2041790451 @default.
- W2022693472 cites W2048920144 @default.
- W2022693472 cites W2049888558 @default.
- W2022693472 cites W2054844242 @default.
- W2022693472 cites W2056687180 @default.
- W2022693472 cites W2061302800 @default.
- W2022693472 cites W2062988843 @default.
- W2022693472 cites W2066167182 @default.
- W2022693472 cites W2069645634 @default.
- W2022693472 cites W2082784943 @default.
- W2022693472 cites W2087532312 @default.
- W2022693472 cites W2087736274 @default.
- W2022693472 cites W2089582851 @default.
- W2022693472 cites W2124219928 @default.
- W2022693472 cites W2144638195 @default.
- W2022693472 cites W2288047124 @default.
- W2022693472 cites W4232256369 @default.
- W2022693472 doi "https://doi.org/10.1016/s0021-9673(02)01245-1" @default.
- W2022693472 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12458937" @default.
- W2022693472 hasPublicationYear "2002" @default.
- W2022693472 type Work @default.
- W2022693472 sameAs 2022693472 @default.
- W2022693472 citedByCount "58" @default.
- W2022693472 countsByYear W20226934722012 @default.
- W2022693472 countsByYear W20226934722013 @default.
- W2022693472 countsByYear W20226934722014 @default.
- W2022693472 countsByYear W20226934722015 @default.
- W2022693472 countsByYear W20226934722016 @default.
- W2022693472 countsByYear W20226934722017 @default.
- W2022693472 countsByYear W20226934722018 @default.
- W2022693472 countsByYear W20226934722019 @default.
- W2022693472 countsByYear W20226934722020 @default.
- W2022693472 countsByYear W20226934722021 @default.
- W2022693472 countsByYear W20226934722022 @default.
- W2022693472 crossrefType "journal-article" @default.
- W2022693472 hasAuthorship W2022693472A5000246977 @default.
- W2022693472 hasAuthorship W2022693472A5030742093 @default.
- W2022693472 hasAuthorship W2022693472A5037381514 @default.
- W2022693472 hasAuthorship W2022693472A5072372910 @default.
- W2022693472 hasAuthorship W2022693472A5090150197 @default.
- W2022693472 hasConcept C113196181 @default.
- W2022693472 hasConcept C121332964 @default.
- W2022693472 hasConcept C123460561 @default.
- W2022693472 hasConcept C145148216 @default.
- W2022693472 hasConcept C162356407 @default.
- W2022693472 hasConcept C178790620 @default.
- W2022693472 hasConcept C185592680 @default.
- W2022693472 hasConcept C198291218 @default.
- W2022693472 hasConcept C205345274 @default.
- W2022693472 hasConcept C205759337 @default.
- W2022693472 hasConcept C205991772 @default.
- W2022693472 hasConcept C40325409 @default.
- W2022693472 hasConcept C43617362 @default.
- W2022693472 hasConcept C51884965 @default.
- W2022693472 hasConcept C66594872 @default.
- W2022693472 hasConcept C97355855 @default.
- W2022693472 hasConceptScore W2022693472C113196181 @default.
- W2022693472 hasConceptScore W2022693472C121332964 @default.
- W2022693472 hasConceptScore W2022693472C123460561 @default.
- W2022693472 hasConceptScore W2022693472C145148216 @default.
- W2022693472 hasConceptScore W2022693472C162356407 @default.
- W2022693472 hasConceptScore W2022693472C178790620 @default.
- W2022693472 hasConceptScore W2022693472C185592680 @default.