Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022698368> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2022698368 abstract "In future generation networks one of the main focuses is on automating the network optimization. This is done through so called Self Organizing Network (SON) functions. A SON instance is a realization of a SON function that governs one or several cells. Several independent SON instances of one or multiple SON functions are likely to generate conflicts. This raises the need for a SON COordinator (SONCO) meant to solve these conflicts. In this paper we consider that each SON function has one SON instance on every cell and we present the design of a SONCO function for coordinating all these instances. The SONCO solves the conflicts that appear on the update requests arbitrating (i.e. accepting/denying the requests) so that it minimizes a predefined regret. This regret takes into account the weights associated to the SON functions that rank their importance according to the operator policies. We solve the problem in a Reinforcement Learning (RL) framework as it offers the possibility to improve the decisions based on past experiences. We employ a state-aggregation technique to make the state space of our solution scale linearly with the number of cells. We provide a study case for two SON functions: Mobility Load Balancing (MLB) tuning the Cell Individual Offset(CIO) and Mobility Robustness Optimization (MRO) tuning the CIO together with the handover hysteresis. The proposed SONCO function solves the conflicts on the CIO update requests. Numerical results show how the proposed SONCO is able to favor either MLB or MRO requests according to their associated weights." @default.
- W2022698368 created "2016-06-24" @default.
- W2022698368 creator A5024802752 @default.
- W2022698368 creator A5033082326 @default.
- W2022698368 creator A5041513563 @default.
- W2022698368 creator A5088463526 @default.
- W2022698368 date "2014-08-22" @default.
- W2022698368 modified "2023-10-16" @default.
- W2022698368 title "SON conflict resolution using reinforcement learning with state aggregation" @default.
- W2022698368 cites W1978453551 @default.
- W2022698368 cites W2051889303 @default.
- W2022698368 cites W2089418596 @default.
- W2022698368 cites W2092140632 @default.
- W2022698368 cites W2150390404 @default.
- W2022698368 cites W2151702936 @default.
- W2022698368 cites W2156971228 @default.
- W2022698368 cites W4293263215 @default.
- W2022698368 cites W586985871 @default.
- W2022698368 doi "https://doi.org/10.1145/2627585.2627591" @default.
- W2022698368 hasPublicationYear "2014" @default.
- W2022698368 type Work @default.
- W2022698368 sameAs 2022698368 @default.
- W2022698368 citedByCount "6" @default.
- W2022698368 countsByYear W20226983682014 @default.
- W2022698368 countsByYear W20226983682015 @default.
- W2022698368 countsByYear W20226983682016 @default.
- W2022698368 countsByYear W20226983682018 @default.
- W2022698368 crossrefType "proceedings-article" @default.
- W2022698368 hasAuthorship W2022698368A5024802752 @default.
- W2022698368 hasAuthorship W2022698368A5033082326 @default.
- W2022698368 hasAuthorship W2022698368A5041513563 @default.
- W2022698368 hasAuthorship W2022698368A5088463526 @default.
- W2022698368 hasBestOaLocation W20226983681 @default.
- W2022698368 hasConcept C11413529 @default.
- W2022698368 hasConcept C154945302 @default.
- W2022698368 hasConcept C15744967 @default.
- W2022698368 hasConcept C17744445 @default.
- W2022698368 hasConcept C199539241 @default.
- W2022698368 hasConcept C21711469 @default.
- W2022698368 hasConcept C41008148 @default.
- W2022698368 hasConcept C48103436 @default.
- W2022698368 hasConcept C67203356 @default.
- W2022698368 hasConcept C77805123 @default.
- W2022698368 hasConcept C97541855 @default.
- W2022698368 hasConceptScore W2022698368C11413529 @default.
- W2022698368 hasConceptScore W2022698368C154945302 @default.
- W2022698368 hasConceptScore W2022698368C15744967 @default.
- W2022698368 hasConceptScore W2022698368C17744445 @default.
- W2022698368 hasConceptScore W2022698368C199539241 @default.
- W2022698368 hasConceptScore W2022698368C21711469 @default.
- W2022698368 hasConceptScore W2022698368C41008148 @default.
- W2022698368 hasConceptScore W2022698368C48103436 @default.
- W2022698368 hasConceptScore W2022698368C67203356 @default.
- W2022698368 hasConceptScore W2022698368C77805123 @default.
- W2022698368 hasConceptScore W2022698368C97541855 @default.
- W2022698368 hasFunder F4320334960 @default.
- W2022698368 hasLocation W20226983681 @default.
- W2022698368 hasLocation W20226983682 @default.
- W2022698368 hasLocation W20226983683 @default.
- W2022698368 hasOpenAccess W2022698368 @default.
- W2022698368 hasPrimaryLocation W20226983681 @default.
- W2022698368 hasRelatedWork W1977959518 @default.
- W2022698368 hasRelatedWork W2038908348 @default.
- W2022698368 hasRelatedWork W2076061571 @default.
- W2022698368 hasRelatedWork W2089013912 @default.
- W2022698368 hasRelatedWork W2106552856 @default.
- W2022698368 hasRelatedWork W2107890255 @default.
- W2022698368 hasRelatedWork W2920061524 @default.
- W2022698368 hasRelatedWork W2945088828 @default.
- W2022698368 hasRelatedWork W3213033178 @default.
- W2022698368 hasRelatedWork W4310083477 @default.
- W2022698368 isParatext "false" @default.
- W2022698368 isRetracted "false" @default.
- W2022698368 magId "2022698368" @default.
- W2022698368 workType "article" @default.