Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022703481> ?p ?o ?g. }
- W2022703481 abstract "This paper presents a method for multi-scale segmentation of surface data using scale-adaptive region growing. The proposed segmentation algorithm is initiated by an unsupervised learning of optimal seed positions through the surface attribute clustering with a two-criterion score function. The seeds are selected as consecutive local maxima of the clustering map, which is computed by an aggregation of the local isotropic contrast and local variance maps. The proposed method avoids typical segmentation errors caused by an inappropriate choice of seed points and thresholds used in the region-growing algorithm. The scale-adaptive threshold estimate is based on the image local statistics in the neighborhoods of seed points. The performance of this method was evaluated on LiDAR surface images." @default.
- W2022703481 created "2016-06-24" @default.
- W2022703481 creator A5007045877 @default.
- W2022703481 creator A5017237322 @default.
- W2022703481 creator A5067130773 @default.
- W2022703481 date "2011-08-01" @default.
- W2022703481 modified "2023-09-25" @default.
- W2022703481 title "Adaptive multi-scale segmentation of surface data using unsupervised learning of seed positions" @default.
- W2022703481 cites W143514521 @default.
- W2022703481 cites W1495665853 @default.
- W2022703481 cites W1580150179 @default.
- W2022703481 cites W1599786999 @default.
- W2022703481 cites W1623080549 @default.
- W2022703481 cites W1972544340 @default.
- W2022703481 cites W1984605325 @default.
- W2022703481 cites W1987971958 @default.
- W2022703481 cites W1996876771 @default.
- W2022703481 cites W1998902551 @default.
- W2022703481 cites W2008209949 @default.
- W2022703481 cites W2039340633 @default.
- W2022703481 cites W2046925174 @default.
- W2022703481 cites W2050797795 @default.
- W2022703481 cites W2059865498 @default.
- W2022703481 cites W2067191022 @default.
- W2022703481 cites W2068934234 @default.
- W2022703481 cites W2076035429 @default.
- W2022703481 cites W2096579040 @default.
- W2022703481 cites W2102338700 @default.
- W2022703481 cites W2118331541 @default.
- W2022703481 cites W2125899407 @default.
- W2022703481 cites W2125916419 @default.
- W2022703481 cites W2133888499 @default.
- W2022703481 cites W2134345313 @default.
- W2022703481 cites W2151103935 @default.
- W2022703481 cites W2156982777 @default.
- W2022703481 cites W2159365380 @default.
- W2022703481 cites W2161160262 @default.
- W2022703481 doi "https://doi.org/10.1016/j.engappai.2011.03.004" @default.
- W2022703481 hasPublicationYear "2011" @default.
- W2022703481 type Work @default.
- W2022703481 sameAs 2022703481 @default.
- W2022703481 citedByCount "2" @default.
- W2022703481 countsByYear W20227034812012 @default.
- W2022703481 countsByYear W20227034812015 @default.
- W2022703481 crossrefType "journal-article" @default.
- W2022703481 hasAuthorship W2022703481A5007045877 @default.
- W2022703481 hasAuthorship W2022703481A5017237322 @default.
- W2022703481 hasAuthorship W2022703481A5067130773 @default.
- W2022703481 hasConcept C121332964 @default.
- W2022703481 hasConcept C124504099 @default.
- W2022703481 hasConcept C134306372 @default.
- W2022703481 hasConcept C153180895 @default.
- W2022703481 hasConcept C154945302 @default.
- W2022703481 hasConcept C186633575 @default.
- W2022703481 hasConcept C206824153 @default.
- W2022703481 hasConcept C2524010 @default.
- W2022703481 hasConcept C25694479 @default.
- W2022703481 hasConcept C2776799497 @default.
- W2022703481 hasConcept C2778755073 @default.
- W2022703481 hasConcept C33923547 @default.
- W2022703481 hasConcept C41008148 @default.
- W2022703481 hasConcept C62520636 @default.
- W2022703481 hasConcept C65885262 @default.
- W2022703481 hasConcept C73555534 @default.
- W2022703481 hasConcept C89600930 @default.
- W2022703481 hasConceptScore W2022703481C121332964 @default.
- W2022703481 hasConceptScore W2022703481C124504099 @default.
- W2022703481 hasConceptScore W2022703481C134306372 @default.
- W2022703481 hasConceptScore W2022703481C153180895 @default.
- W2022703481 hasConceptScore W2022703481C154945302 @default.
- W2022703481 hasConceptScore W2022703481C186633575 @default.
- W2022703481 hasConceptScore W2022703481C206824153 @default.
- W2022703481 hasConceptScore W2022703481C2524010 @default.
- W2022703481 hasConceptScore W2022703481C25694479 @default.
- W2022703481 hasConceptScore W2022703481C2776799497 @default.
- W2022703481 hasConceptScore W2022703481C2778755073 @default.
- W2022703481 hasConceptScore W2022703481C33923547 @default.
- W2022703481 hasConceptScore W2022703481C41008148 @default.
- W2022703481 hasConceptScore W2022703481C62520636 @default.
- W2022703481 hasConceptScore W2022703481C65885262 @default.
- W2022703481 hasConceptScore W2022703481C73555534 @default.
- W2022703481 hasConceptScore W2022703481C89600930 @default.
- W2022703481 hasLocation W20227034811 @default.
- W2022703481 hasOpenAccess W2022703481 @default.
- W2022703481 hasPrimaryLocation W20227034811 @default.
- W2022703481 hasRelatedWork W1944529374 @default.
- W2022703481 hasRelatedWork W1969315477 @default.
- W2022703481 hasRelatedWork W1970472686 @default.
- W2022703481 hasRelatedWork W1974017416 @default.
- W2022703481 hasRelatedWork W2001542602 @default.
- W2022703481 hasRelatedWork W2046607479 @default.
- W2022703481 hasRelatedWork W2142299700 @default.
- W2022703481 hasRelatedWork W2353329455 @default.
- W2022703481 hasRelatedWork W2353381169 @default.
- W2022703481 hasRelatedWork W2357138471 @default.
- W2022703481 hasRelatedWork W2359797642 @default.
- W2022703481 hasRelatedWork W2366050026 @default.
- W2022703481 hasRelatedWork W2373616393 @default.
- W2022703481 hasRelatedWork W2379461189 @default.
- W2022703481 hasRelatedWork W2386976105 @default.