Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022715077> ?p ?o ?g. }
- W2022715077 abstract "The accurate viscosity measurement of complex fluids is essential for characterizing fluidic behaviors in blood vessels and in microfluidic channels of lab-on-a-chip devices. A microfluidic platform that accurately identifies biophysical properties of blood can be used as a promising tool for the early detections of cardiovascular and microcirculation diseases. In this study, a flow-switching phenomenon depending on hydrodynamic balancing in a microfluidic channel was adopted to conduct viscosity measurement of complex fluids with label-free operation. A microfluidic device for demonstrating this proposed method was designed to have two inlets for supplying the test and reference fluids, two side channels in parallel, and a junction channel connected to the midpoint of the two side channels. According to this proposed method, viscosities of various fluids with different phases (aqueous, oil, and blood) in relation to that of reference fluid were accurately determined by measuring the switching flow-rate ratio between the test and reference fluids, when a reverse flow of the test or reference fluid occurs in the junction channel. An analytical viscosity formula was derived to measure the viscosity of a test fluid in relation to that of the corresponding reference fluid using a discrete circuit model for the microfluidic device. The experimental analysis for evaluating the effects of various parameters on the performance of the proposed method revealed that the fluidic resistance ratio (RJL/RL, fluidic resistance in the junction channel (RJL) to fluidic resistance in the side channel (RL)) strongly affects the measurement accuracy. The microfluidic device with smaller RJL/RL values is helpful to measure accurately the viscosity of the test fluid. The proposed method accurately measured the viscosities of various fluids, including single-phase (Glycerin and plasma) and oil-water phase (oil vs. deionized water) fluids, compared with conventional methods. The proposed method was also successfully applied to measure viscosities of blood with varying hematocrits, chemically fixed RBCS, and channel sizes. Based on these experimental results, the proposed method can be effectively used to measure the viscosities of various fluids easily, without any fluorescent labeling and tedious calibration procedures." @default.
- W2022715077 created "2016-06-24" @default.
- W2022715077 creator A5059577696 @default.
- W2022715077 creator A5074027170 @default.
- W2022715077 creator A5078005948 @default.
- W2022715077 date "2013-07-01" @default.
- W2022715077 modified "2023-09-29" @default.
- W2022715077 title "Label-free viscosity measurement of complex fluids using reversal flow switching manipulation in a microfluidic channel" @default.
- W2022715077 cites W1535976086 @default.
- W2022715077 cites W1785238995 @default.
- W2022715077 cites W1972008342 @default.
- W2022715077 cites W1973879910 @default.
- W2022715077 cites W1982646146 @default.
- W2022715077 cites W1984678825 @default.
- W2022715077 cites W1987039761 @default.
- W2022715077 cites W1994497032 @default.
- W2022715077 cites W2003638128 @default.
- W2022715077 cites W2012472753 @default.
- W2022715077 cites W2013710401 @default.
- W2022715077 cites W2015864566 @default.
- W2022715077 cites W2016983464 @default.
- W2022715077 cites W2017357955 @default.
- W2022715077 cites W2022497302 @default.
- W2022715077 cites W2026388383 @default.
- W2022715077 cites W2028422569 @default.
- W2022715077 cites W2029446957 @default.
- W2022715077 cites W2034127455 @default.
- W2022715077 cites W2036684743 @default.
- W2022715077 cites W2039076102 @default.
- W2022715077 cites W2052788816 @default.
- W2022715077 cites W2056937792 @default.
- W2022715077 cites W2058293803 @default.
- W2022715077 cites W2059927947 @default.
- W2022715077 cites W2062804887 @default.
- W2022715077 cites W2073982529 @default.
- W2022715077 cites W2074285740 @default.
- W2022715077 cites W2078262850 @default.
- W2022715077 cites W2086623689 @default.
- W2022715077 cites W2088220499 @default.
- W2022715077 cites W2089360450 @default.
- W2022715077 cites W2093700999 @default.
- W2022715077 cites W2096087854 @default.
- W2022715077 cites W2098708326 @default.
- W2022715077 cites W2115419527 @default.
- W2022715077 cites W2121010053 @default.
- W2022715077 cites W2121430393 @default.
- W2022715077 cites W2127921488 @default.
- W2022715077 cites W2129698651 @default.
- W2022715077 cites W2131025064 @default.
- W2022715077 cites W2145736118 @default.
- W2022715077 cites W2149057006 @default.
- W2022715077 cites W2166685062 @default.
- W2022715077 cites W2168880282 @default.
- W2022715077 cites W2171937459 @default.
- W2022715077 cites W2326872234 @default.
- W2022715077 cites W2528381731 @default.
- W2022715077 cites W74437596 @default.
- W2022715077 doi "https://doi.org/10.1063/1.4816713" @default.
- W2022715077 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3739827" @default.
- W2022715077 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24404040" @default.
- W2022715077 hasPublicationYear "2013" @default.
- W2022715077 type Work @default.
- W2022715077 sameAs 2022715077 @default.
- W2022715077 citedByCount "49" @default.
- W2022715077 countsByYear W20227150772013 @default.
- W2022715077 countsByYear W20227150772014 @default.
- W2022715077 countsByYear W20227150772015 @default.
- W2022715077 countsByYear W20227150772016 @default.
- W2022715077 countsByYear W20227150772017 @default.
- W2022715077 countsByYear W20227150772018 @default.
- W2022715077 countsByYear W20227150772019 @default.
- W2022715077 countsByYear W20227150772020 @default.
- W2022715077 countsByYear W20227150772021 @default.
- W2022715077 countsByYear W20227150772022 @default.
- W2022715077 countsByYear W20227150772023 @default.
- W2022715077 crossrefType "journal-article" @default.
- W2022715077 hasAuthorship W2022715077A5059577696 @default.
- W2022715077 hasAuthorship W2022715077A5074027170 @default.
- W2022715077 hasAuthorship W2022715077A5078005948 @default.
- W2022715077 hasBestOaLocation W20227150772 @default.
- W2022715077 hasConcept C119599485 @default.
- W2022715077 hasConcept C121332964 @default.
- W2022715077 hasConcept C127162648 @default.
- W2022715077 hasConcept C127172972 @default.
- W2022715077 hasConcept C127413603 @default.
- W2022715077 hasConcept C132651336 @default.
- W2022715077 hasConcept C159985019 @default.
- W2022715077 hasConcept C171250308 @default.
- W2022715077 hasConcept C172120300 @default.
- W2022715077 hasConcept C192562407 @default.
- W2022715077 hasConcept C38349280 @default.
- W2022715077 hasConcept C41008148 @default.
- W2022715077 hasConcept C57879066 @default.
- W2022715077 hasConcept C76155785 @default.
- W2022715077 hasConcept C8673954 @default.
- W2022715077 hasConceptScore W2022715077C119599485 @default.
- W2022715077 hasConceptScore W2022715077C121332964 @default.
- W2022715077 hasConceptScore W2022715077C127162648 @default.
- W2022715077 hasConceptScore W2022715077C127172972 @default.
- W2022715077 hasConceptScore W2022715077C127413603 @default.