Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022719323> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2022719323 abstract "In the next generation of wireless networks, the entire network operating on different radio frequencies under wireless mode will be available for communication. Cognitive Networks are an emerging new type of networking technology that can utilize both Radio Spectrum and Wireless Station. Based on the Knowledge of the availability of such resources gathered from past experience the resources can be utilized efficiently. Signaling is the major issue in Cognitive Network. Multiple Input Multiple Output (MIMO) technique is used for the transmission of signals in Cognitive Network. In this paper, the performance of MIMO in a scattered environment is analyzed and water filling algorithm is used to maximize the capacity of MIMO channels. We also propose an optimum beamforming algorithm to design beamforming vectors such that, interference caused by the primary transmitter to the cognitive receiver and the interference caused by the cognitive transmitter to the primary receiver is completely nullified while maximizing the rate of both primary and secondary links. The proposed technique does not require any changes in the existing environment between the primary and secondary user. The secondary user will be allowed to transmit concurrently to the primary user. Since the primary user is a licensed one it need not to have any knowledge about the resources utilized and performance of the secondary user and it transmits independently. Further it is also proved that the rate of Cognitive Multiple Input Multiple Output (MIMO) link implemented by the proposed beamforming algorithms is equal to interference free Multiple Input Single Output (MISO) link." @default.
- W2022719323 created "2016-06-24" @default.
- W2022719323 creator A5014710964 @default.
- W2022719323 creator A5085145585 @default.
- W2022719323 date "2013-03-01" @default.
- W2022719323 modified "2023-09-26" @default.
- W2022719323 title "Enhancing the performance in cognitive network" @default.
- W2022719323 cites W2105122439 @default.
- W2022719323 cites W2118809092 @default.
- W2022719323 cites W2151075555 @default.
- W2022719323 cites W2151188327 @default.
- W2022719323 cites W2155847893 @default.
- W2022719323 cites W2479707669 @default.
- W2022719323 doi "https://doi.org/10.1109/icghpc.2013.6533934" @default.
- W2022719323 hasPublicationYear "2013" @default.
- W2022719323 type Work @default.
- W2022719323 sameAs 2022719323 @default.
- W2022719323 citedByCount "1" @default.
- W2022719323 countsByYear W20227193232014 @default.
- W2022719323 crossrefType "proceedings-article" @default.
- W2022719323 hasAuthorship W2022719323A5014710964 @default.
- W2022719323 hasAuthorship W2022719323A5085145585 @default.
- W2022719323 hasConcept C108037233 @default.
- W2022719323 hasConcept C127162648 @default.
- W2022719323 hasConcept C127413603 @default.
- W2022719323 hasConcept C149946192 @default.
- W2022719323 hasConcept C165650700 @default.
- W2022719323 hasConcept C182448111 @default.
- W2022719323 hasConcept C207987634 @default.
- W2022719323 hasConcept C24326235 @default.
- W2022719323 hasConcept C31258907 @default.
- W2022719323 hasConcept C32022120 @default.
- W2022719323 hasConcept C32542511 @default.
- W2022719323 hasConcept C41008148 @default.
- W2022719323 hasConcept C47798520 @default.
- W2022719323 hasConcept C54197355 @default.
- W2022719323 hasConcept C555944384 @default.
- W2022719323 hasConcept C761482 @default.
- W2022719323 hasConcept C76155785 @default.
- W2022719323 hasConcept C91330434 @default.
- W2022719323 hasConceptScore W2022719323C108037233 @default.
- W2022719323 hasConceptScore W2022719323C127162648 @default.
- W2022719323 hasConceptScore W2022719323C127413603 @default.
- W2022719323 hasConceptScore W2022719323C149946192 @default.
- W2022719323 hasConceptScore W2022719323C165650700 @default.
- W2022719323 hasConceptScore W2022719323C182448111 @default.
- W2022719323 hasConceptScore W2022719323C207987634 @default.
- W2022719323 hasConceptScore W2022719323C24326235 @default.
- W2022719323 hasConceptScore W2022719323C31258907 @default.
- W2022719323 hasConceptScore W2022719323C32022120 @default.
- W2022719323 hasConceptScore W2022719323C32542511 @default.
- W2022719323 hasConceptScore W2022719323C41008148 @default.
- W2022719323 hasConceptScore W2022719323C47798520 @default.
- W2022719323 hasConceptScore W2022719323C54197355 @default.
- W2022719323 hasConceptScore W2022719323C555944384 @default.
- W2022719323 hasConceptScore W2022719323C761482 @default.
- W2022719323 hasConceptScore W2022719323C76155785 @default.
- W2022719323 hasConceptScore W2022719323C91330434 @default.
- W2022719323 hasLocation W20227193231 @default.
- W2022719323 hasOpenAccess W2022719323 @default.
- W2022719323 hasPrimaryLocation W20227193231 @default.
- W2022719323 hasRelatedWork W2000024015 @default.
- W2022719323 hasRelatedWork W2006659563 @default.
- W2022719323 hasRelatedWork W2017104340 @default.
- W2022719323 hasRelatedWork W2018956485 @default.
- W2022719323 hasRelatedWork W2031038715 @default.
- W2022719323 hasRelatedWork W2034991012 @default.
- W2022719323 hasRelatedWork W2046129113 @default.
- W2022719323 hasRelatedWork W2051420191 @default.
- W2022719323 hasRelatedWork W2059056819 @default.
- W2022719323 hasRelatedWork W2102444815 @default.
- W2022719323 hasRelatedWork W2107458326 @default.
- W2022719323 hasRelatedWork W2150107293 @default.
- W2022719323 hasRelatedWork W2151188327 @default.
- W2022719323 hasRelatedWork W2186100939 @default.
- W2022719323 hasRelatedWork W2314559330 @default.
- W2022719323 hasRelatedWork W2317472831 @default.
- W2022719323 hasRelatedWork W2396970681 @default.
- W2022719323 hasRelatedWork W2537122090 @default.
- W2022719323 hasRelatedWork W2539739272 @default.
- W2022719323 hasRelatedWork W856047815 @default.
- W2022719323 isParatext "false" @default.
- W2022719323 isRetracted "false" @default.
- W2022719323 magId "2022719323" @default.
- W2022719323 workType "article" @default.