Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022731602> ?p ?o ?g. }
- W2022731602 endingPage "593" @default.
- W2022731602 startingPage "588" @default.
- W2022731602 abstract "Abstract: In the forensic context, teeth are often recovered in mass disasters, armed conflicts, and mass graves associated with human rights violations. Therefore, for victim identification, techniques utilizing the dentition to estimate the first parameters of identity (e.g., age) can be critical. This analysis was undertaken to apply a Bayesian statistical method, transition analysis, based on the Gompertz–Makeham (GM) hazard model, to estimate individual ages‐at‐death for Balkan populations utilizing dental wear. Dental wear phases were scored following Smith’s eight‐phase ordinal scoring method and chart. To estimate age, probability density functions for the posterior distributions of age for each tooth phase are calculated. Transition analysis was utilized to generate a mean age‐of‐transition from one dental wear phase to the next. The age estimates are based on the calculated age distribution from the GM hazard analysis and the ages‐of‐transition. To estimate the age‐at‐death for an individual, the highest posterior density region for each phase is calculated. By using a Bayesian statistical approach to estimate age, the population’s age distribution is taken into account. Therefore, the age estimates are reliable for the Balkan populations, regardless of population or sex differences. The results showed that a vast amount of interpersonal variation in dental wear exists within the current sample and that this method may be most useful for classifying unknown individuals into broad age cohorts rather than small age ranges." @default.
- W2022731602 created "2016-06-24" @default.
- W2022731602 creator A5004966639 @default.
- W2022731602 creator A5066357418 @default.
- W2022731602 creator A5067707275 @default.
- W2022731602 date "2008-05-01" @default.
- W2022731602 modified "2023-10-16" @default.
- W2022731602 title "A Bayesian Approach to Estimate Skeletal Age-at-Death Utilizing Dental Wear" @default.
- W2022731602 cites W1553439038 @default.
- W2022731602 cites W1968559723 @default.
- W2022731602 cites W1979095251 @default.
- W2022731602 cites W2001732373 @default.
- W2022731602 cites W2002115107 @default.
- W2022731602 cites W2006650925 @default.
- W2022731602 cites W2008944267 @default.
- W2022731602 cites W2017335670 @default.
- W2022731602 cites W2017763685 @default.
- W2022731602 cites W2021413785 @default.
- W2022731602 cites W2025028485 @default.
- W2022731602 cites W2032245997 @default.
- W2022731602 cites W2032960260 @default.
- W2022731602 cites W2047395888 @default.
- W2022731602 cites W2051158571 @default.
- W2022731602 cites W2057974072 @default.
- W2022731602 cites W2060202272 @default.
- W2022731602 cites W2072712775 @default.
- W2022731602 cites W2079449242 @default.
- W2022731602 cites W2084591154 @default.
- W2022731602 cites W2097595750 @default.
- W2022731602 cites W2101264746 @default.
- W2022731602 cites W2101487804 @default.
- W2022731602 cites W2104612289 @default.
- W2022731602 cites W2117785162 @default.
- W2022731602 cites W2142103596 @default.
- W2022731602 cites W2167162296 @default.
- W2022731602 cites W2257515751 @default.
- W2022731602 cites W305688962 @default.
- W2022731602 doi "https://doi.org/10.1111/j.1556-4029.2008.00714.x" @default.
- W2022731602 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18471201" @default.
- W2022731602 hasPublicationYear "2008" @default.
- W2022731602 type Work @default.
- W2022731602 sameAs 2022731602 @default.
- W2022731602 citedByCount "74" @default.
- W2022731602 countsByYear W20227316022012 @default.
- W2022731602 countsByYear W20227316022013 @default.
- W2022731602 countsByYear W20227316022014 @default.
- W2022731602 countsByYear W20227316022015 @default.
- W2022731602 countsByYear W20227316022016 @default.
- W2022731602 countsByYear W20227316022017 @default.
- W2022731602 countsByYear W20227316022018 @default.
- W2022731602 countsByYear W20227316022019 @default.
- W2022731602 countsByYear W20227316022020 @default.
- W2022731602 countsByYear W20227316022021 @default.
- W2022731602 countsByYear W20227316022022 @default.
- W2022731602 countsByYear W20227316022023 @default.
- W2022731602 crossrefType "journal-article" @default.
- W2022731602 hasAuthorship W2022731602A5004966639 @default.
- W2022731602 hasAuthorship W2022731602A5066357418 @default.
- W2022731602 hasAuthorship W2022731602A5067707275 @default.
- W2022731602 hasConcept C105795698 @default.
- W2022731602 hasConcept C107673813 @default.
- W2022731602 hasConcept C144024400 @default.
- W2022731602 hasConcept C149923435 @default.
- W2022731602 hasConcept C166957645 @default.
- W2022731602 hasConcept C176979668 @default.
- W2022731602 hasConcept C205649164 @default.
- W2022731602 hasConcept C2779343474 @default.
- W2022731602 hasConcept C2908647359 @default.
- W2022731602 hasConcept C33923547 @default.
- W2022731602 hasConcept C71924100 @default.
- W2022731602 hasConceptScore W2022731602C105795698 @default.
- W2022731602 hasConceptScore W2022731602C107673813 @default.
- W2022731602 hasConceptScore W2022731602C144024400 @default.
- W2022731602 hasConceptScore W2022731602C149923435 @default.
- W2022731602 hasConceptScore W2022731602C166957645 @default.
- W2022731602 hasConceptScore W2022731602C176979668 @default.
- W2022731602 hasConceptScore W2022731602C205649164 @default.
- W2022731602 hasConceptScore W2022731602C2779343474 @default.
- W2022731602 hasConceptScore W2022731602C2908647359 @default.
- W2022731602 hasConceptScore W2022731602C33923547 @default.
- W2022731602 hasConceptScore W2022731602C71924100 @default.
- W2022731602 hasIssue "3" @default.
- W2022731602 hasLocation W20227316021 @default.
- W2022731602 hasLocation W20227316022 @default.
- W2022731602 hasOpenAccess W2022731602 @default.
- W2022731602 hasPrimaryLocation W20227316021 @default.
- W2022731602 hasRelatedWork W1922851888 @default.
- W2022731602 hasRelatedWork W1935400161 @default.
- W2022731602 hasRelatedWork W1982565685 @default.
- W2022731602 hasRelatedWork W1985378427 @default.
- W2022731602 hasRelatedWork W202984796 @default.
- W2022731602 hasRelatedWork W2040451712 @default.
- W2022731602 hasRelatedWork W2046260256 @default.
- W2022731602 hasRelatedWork W2094676119 @default.
- W2022731602 hasRelatedWork W2728965222 @default.
- W2022731602 hasRelatedWork W4232468313 @default.
- W2022731602 hasVolume "53" @default.
- W2022731602 isParatext "false" @default.