Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022742403> ?p ?o ?g. }
- W2022742403 endingPage "3025" @default.
- W2022742403 startingPage "3012" @default.
- W2022742403 abstract "Mössbauer spectra of [LFe(II)X](0) (L = beta-diketiminate; X = Cl(-), CH(3)(-), NHTol(-), NHtBu(-)), 1.X, were recorded between 4.2 and 200 K in applied magnetic fields up to 8.0 T. A spin Hamiltonian analysis of these data revealed a spin S = 2 system with uniaxial magnetization properties, arising from a quasi-degenerate M(S) = +/-2 doublet that is separated from the next magnetic sublevels by very large zero-field splittings (3/D/ > 150 cm(-1)). The ground levels give rise to positive magnetic hyperfine fields of unprecedented magnitudes, B(int) = +82, +78, +72, and +62 T for 1.CH(3), 1.NHTol, 1.NHtBu, and 1.Cl, respectively. Parallel-mode EPR measurements at X-band gave effective g values that are considerably larger than the spin-only value 8, namely g(eff) = 10.9 (1.Cl) and 11.4 (1.CH(3)), suggesting the presence of unquenched orbital angular momenta. A qualitative crystal field analysis of g(eff) shows that these momenta originate from spin-orbit coupling between energetically closely spaced yz and z(2) 3d-orbital states at iron and that the spin of the M(S) = +/-2 doublet is quantized along x, where x is along the Fe-X vector and z is normal to the molecular plane. A quantitative analysis of g(eff) provides the magnitude of the crystal field splitting of the lowest two orbitals, /epsilon(yz) - epsilon(2)(z)/ = 452 (1.Cl) and 135 cm(-1) (1.CH(3)). A determination of the sign of the crystal field splitting was attempted by analyzing the electric field gradient (EFG) at the (57)Fe nuclei, taking into account explicitly the influence of spin-orbit coupling on the valence term and ligand contributions. This analysis, however, led to ambiguous results for the sign of epsilon(yz) - epsilon(2)(z). The ambiguity was resolved by analyzing the splitting Delta of the M(S) = +/-2 doublet; Delta = 0.3 cm(-1) for 1.Cl and Delta = 0.03 cm(-)(1) for 1.CH(3). This approach showed that z(2) is the ground state in both complexes and that epsilon(yz) - epsilon(2)(z) approximately 3500 cm(-1) for 1.Cl and 6000 cm(-1) for 1.CH(3). The crystal field states and energies were compared with the results obtained from time-dependent density functional theory (TD-DFT). The isomer shifts and electric field gradients in 1.X exhibit a remarkably strong dependence on ligand X. The ligand contributions to the EFG, denoted W, were expressed by assigning ligand-specific parameters: W(X) to ligands X and W(N) to the diketiminate nitrogens. The additivity and transferability hypotheses underlying this model were confirmed by DFT calculations. The analysis of the EFG data for 1.X yields the ordering W(N(diketiminate)) < W(Cl) < W(N'HR), W(CH(3)) and indicates that the diketiminate nitrogens perturb the iron wave function to a considerably lesser extent than the monodentate nitrogen donors do. Finally, our study of these synthetic model complexes suggests an explanation for the unusual values for the electric hyperfine parameters of the iron sites in the Fe-Mo cofactor of nitrogenase in the M(N) state." @default.
- W2022742403 created "2016-06-24" @default.
- W2022742403 creator A5000719318 @default.
- W2022742403 creator A5018106788 @default.
- W2022742403 creator A5021122246 @default.
- W2022742403 creator A5029597992 @default.
- W2022742403 creator A5058130714 @default.
- W2022742403 creator A5060514011 @default.
- W2022742403 date "2002-02-27" @default.
- W2022742403 modified "2023-10-11" @default.
- W2022742403 title "Planar Three-Coordinate High-Spin Fe<sup>II</sup> Complexes with Large Orbital Angular Momentum: Mössbauer, Electron Paramagnetic Resonance, and Electronic Structure Studies" @default.
- W2022742403 cites W1216489155 @default.
- W2022742403 cites W1441347305 @default.
- W2022742403 cites W1963872103 @default.
- W2022742403 cites W1972651153 @default.
- W2022742403 cites W1974086171 @default.
- W2022742403 cites W1979011973 @default.
- W2022742403 cites W1981040296 @default.
- W2022742403 cites W2005896881 @default.
- W2022742403 cites W2013903780 @default.
- W2022742403 cites W2017250743 @default.
- W2022742403 cites W2029245541 @default.
- W2022742403 cites W2039142764 @default.
- W2022742403 cites W2045440907 @default.
- W2022742403 cites W2053312725 @default.
- W2022742403 cites W2063663126 @default.
- W2022742403 cites W2068228867 @default.
- W2022742403 cites W2069197437 @default.
- W2022742403 cites W2070457435 @default.
- W2022742403 cites W2075496853 @default.
- W2022742403 cites W2080969631 @default.
- W2022742403 cites W2084083512 @default.
- W2022742403 cites W2084919208 @default.
- W2022742403 cites W2085736282 @default.
- W2022742403 cites W2087542891 @default.
- W2022742403 cites W2090994560 @default.
- W2022742403 cites W2093283981 @default.
- W2022742403 cites W2099037802 @default.
- W2022742403 cites W2144332006 @default.
- W2022742403 cites W2155072071 @default.
- W2022742403 cites W2230728100 @default.
- W2022742403 cites W4231960227 @default.
- W2022742403 cites W4248052365 @default.
- W2022742403 cites W4253159604 @default.
- W2022742403 cites W4300816443 @default.
- W2022742403 doi "https://doi.org/10.1021/ja012327l" @default.
- W2022742403 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11902893" @default.
- W2022742403 hasPublicationYear "2002" @default.
- W2022742403 type Work @default.
- W2022742403 sameAs 2022742403 @default.
- W2022742403 citedByCount "190" @default.
- W2022742403 countsByYear W20227424032012 @default.
- W2022742403 countsByYear W20227424032013 @default.
- W2022742403 countsByYear W20227424032014 @default.
- W2022742403 countsByYear W20227424032015 @default.
- W2022742403 countsByYear W20227424032016 @default.
- W2022742403 countsByYear W20227424032017 @default.
- W2022742403 countsByYear W20227424032018 @default.
- W2022742403 countsByYear W20227424032019 @default.
- W2022742403 countsByYear W20227424032020 @default.
- W2022742403 countsByYear W20227424032021 @default.
- W2022742403 countsByYear W20227424032022 @default.
- W2022742403 countsByYear W20227424032023 @default.
- W2022742403 crossrefType "journal-article" @default.
- W2022742403 hasAuthorship W2022742403A5000719318 @default.
- W2022742403 hasAuthorship W2022742403A5018106788 @default.
- W2022742403 hasAuthorship W2022742403A5021122246 @default.
- W2022742403 hasAuthorship W2022742403A5029597992 @default.
- W2022742403 hasAuthorship W2022742403A5058130714 @default.
- W2022742403 hasAuthorship W2022742403A5060514011 @default.
- W2022742403 hasConcept C115260700 @default.
- W2022742403 hasConcept C121332964 @default.
- W2022742403 hasConcept C131538251 @default.
- W2022742403 hasConcept C139358910 @default.
- W2022742403 hasConcept C147120987 @default.
- W2022742403 hasConcept C155675718 @default.
- W2022742403 hasConcept C178790620 @default.
- W2022742403 hasConcept C184779094 @default.
- W2022742403 hasConcept C185592680 @default.
- W2022742403 hasConcept C187961010 @default.
- W2022742403 hasConcept C189394030 @default.
- W2022742403 hasConcept C26873012 @default.
- W2022742403 hasConcept C32546565 @default.
- W2022742403 hasConcept C32909587 @default.
- W2022742403 hasConcept C42704618 @default.
- W2022742403 hasConcept C46141821 @default.
- W2022742403 hasConcept C54553102 @default.
- W2022742403 hasConcept C62520636 @default.
- W2022742403 hasConcept C8010536 @default.
- W2022742403 hasConcept C97355855 @default.
- W2022742403 hasConceptScore W2022742403C115260700 @default.
- W2022742403 hasConceptScore W2022742403C121332964 @default.
- W2022742403 hasConceptScore W2022742403C131538251 @default.
- W2022742403 hasConceptScore W2022742403C139358910 @default.
- W2022742403 hasConceptScore W2022742403C147120987 @default.
- W2022742403 hasConceptScore W2022742403C155675718 @default.
- W2022742403 hasConceptScore W2022742403C178790620 @default.
- W2022742403 hasConceptScore W2022742403C184779094 @default.