Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022752092> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2022752092 abstract "Clinical reports indicate that differentiating bacterial from viral (aseptic) meningitis is still a difficult issue, compounded by factors such as age and time of presentation. Clinicians routinely rely on the results from blood and cerebrospinal fluid (CSF) to discriminate bacterial from viral meningitis. Tests such as the CSF Gram stain performed prior to broad-spectrum antibiotic treatment yield sensitivities between 60 and 92%. Sensitivity can be increased by performing additional laboratory testing, but the results are never completely accurate and are not cost effective in many cases. In this study, we wished to determine if a machine learning approach, based on rough sets and a probabilistic neural network could be used to differentiate between viral and bacterial meningitis. We analysed a clinical dataset containing records for 581 cases of acute bacterial or viral meningitis. The rough sets approach was used to perform dimensionality reduction in addition to classification. The results were validated using a probabilistic neural network. With an overall accuracy of 98%, these results indicate rough sets is a useful approach to differentiating bacterial from viral meningitis." @default.
- W2022752092 created "2016-06-24" @default.
- W2022752092 creator A5000296114 @default.
- W2022752092 creator A5036876854 @default.
- W2022752092 creator A5056770224 @default.
- W2022752092 date "2006-10-01" @default.
- W2022752092 modified "2023-09-27" @default.
- W2022752092 title "A Machine Learning Approach to Differentiating Bacterial From Viral Meningitis" @default.
- W2022752092 cites W1549982694 @default.
- W2022752092 cites W1964168965 @default.
- W2022752092 cites W1980952929 @default.
- W2022752092 cites W1996073837 @default.
- W2022752092 cites W2048403873 @default.
- W2022752092 cites W2150482086 @default.
- W2022752092 cites W2154345794 @default.
- W2022752092 cites W4255833381 @default.
- W2022752092 doi "https://doi.org/10.1109/jva.2006.2" @default.
- W2022752092 hasPublicationYear "2006" @default.
- W2022752092 type Work @default.
- W2022752092 sameAs 2022752092 @default.
- W2022752092 citedByCount "6" @default.
- W2022752092 countsByYear W20227520922018 @default.
- W2022752092 countsByYear W20227520922019 @default.
- W2022752092 countsByYear W20227520922020 @default.
- W2022752092 countsByYear W20227520922021 @default.
- W2022752092 countsByYear W20227520922022 @default.
- W2022752092 crossrefType "proceedings-article" @default.
- W2022752092 hasAuthorship W2022752092A5000296114 @default.
- W2022752092 hasAuthorship W2022752092A5036876854 @default.
- W2022752092 hasAuthorship W2022752092A5056770224 @default.
- W2022752092 hasBestOaLocation W20227520922 @default.
- W2022752092 hasConcept C119857082 @default.
- W2022752092 hasConcept C142724271 @default.
- W2022752092 hasConcept C154945302 @default.
- W2022752092 hasConcept C187212893 @default.
- W2022752092 hasConcept C205501099 @default.
- W2022752092 hasConcept C2777208983 @default.
- W2022752092 hasConcept C2779651940 @default.
- W2022752092 hasConcept C2781026528 @default.
- W2022752092 hasConcept C2781304901 @default.
- W2022752092 hasConcept C3018430615 @default.
- W2022752092 hasConcept C41008148 @default.
- W2022752092 hasConcept C501593827 @default.
- W2022752092 hasConcept C71924100 @default.
- W2022752092 hasConcept C86803240 @default.
- W2022752092 hasConcept C89423630 @default.
- W2022752092 hasConceptScore W2022752092C119857082 @default.
- W2022752092 hasConceptScore W2022752092C142724271 @default.
- W2022752092 hasConceptScore W2022752092C154945302 @default.
- W2022752092 hasConceptScore W2022752092C187212893 @default.
- W2022752092 hasConceptScore W2022752092C205501099 @default.
- W2022752092 hasConceptScore W2022752092C2777208983 @default.
- W2022752092 hasConceptScore W2022752092C2779651940 @default.
- W2022752092 hasConceptScore W2022752092C2781026528 @default.
- W2022752092 hasConceptScore W2022752092C2781304901 @default.
- W2022752092 hasConceptScore W2022752092C3018430615 @default.
- W2022752092 hasConceptScore W2022752092C41008148 @default.
- W2022752092 hasConceptScore W2022752092C501593827 @default.
- W2022752092 hasConceptScore W2022752092C71924100 @default.
- W2022752092 hasConceptScore W2022752092C86803240 @default.
- W2022752092 hasConceptScore W2022752092C89423630 @default.
- W2022752092 hasLocation W20227520921 @default.
- W2022752092 hasLocation W20227520922 @default.
- W2022752092 hasOpenAccess W2022752092 @default.
- W2022752092 hasPrimaryLocation W20227520921 @default.
- W2022752092 hasRelatedWork W2045330699 @default.
- W2022752092 hasRelatedWork W2100976279 @default.
- W2022752092 hasRelatedWork W2134226050 @default.
- W2022752092 hasRelatedWork W2207080430 @default.
- W2022752092 hasRelatedWork W2409434068 @default.
- W2022752092 hasRelatedWork W2608599008 @default.
- W2022752092 hasRelatedWork W3133670360 @default.
- W2022752092 hasRelatedWork W3208942675 @default.
- W2022752092 hasRelatedWork W3209669685 @default.
- W2022752092 hasRelatedWork W61903254 @default.
- W2022752092 isParatext "false" @default.
- W2022752092 isRetracted "false" @default.
- W2022752092 magId "2022752092" @default.
- W2022752092 workType "article" @default.