Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022754861> ?p ?o ?g. }
- W2022754861 endingPage "6202" @default.
- W2022754861 startingPage "6188" @default.
- W2022754861 abstract "In digital breast tomosynthesis (DBT), a volumetric reconstruction of the breast is generated from a limited range of x-ray projections. One trade-off of DBT is resolution loss in the projections due to non-normal (i.e., oblique) x-ray incidence. Although degradation in image quality due to oblique incidence has been studied using empirical data and Monte Carlo simulations, a theoretical treatment has been lacking. The purpose of this work is to extend Swank's calculations of the transfer functions of turbid granular phosphors to oblique incidence. The model is ultimately used as a tool for optimizing the design of DBT detectors.A quantum-limited system and 20 keV x-rays are considered. Under these assumptions, the modulation transfer function (MTF) and noise power spectra (NPS) are derived using the diffusion approximation to the Boltzmann equation to model optical scatter within the phosphor. This approach is applicable to a nonstructured scintillator such as gadolinium oxysulfide doped with terbium (Gd(2)O(2)S:Tb), which is commonly used in breast imaging and which can reasonably approximate other detector materials. The detective quantum efficiency (DQE) is then determined from the Nishikawa formulation, where it is written as the product of the x-ray quantum detection efficiency, the Swank factor, and the Lubberts fraction. Transfer functions are calculated for both front- and back-screen configurations, which differ by positioning the photocathode at the exit or entrance point of the x-ray beam, respectively.In the front-screen configuration, MTF and DQE are found to have considerable angular dependence, while NPS is shown to vary minimally with projection angle. As expected, the high frequency MTF and DQE are degraded substantially at large angles. By contrast, all transfer functions for the back-screen configuration have the advantage of significantly less angular dependence. Using these models, we investigated the possibility for optimizing the design of DBT detectors. As an example optimization strategy, the phosphor thickness which maximizes the DQE at a fixed frequency is analyzed. This work demonstrates that the optimal phosphor thickness for the front-screen is angularly dependent, shifting to lower thickness at higher angles. Conversely, the back-screen is not optimized by a single thickness but instead attains reasonably high DQE values over a large range of thicknesses. Although the back-screen configuration is not suited for current detectors using a glass substrate, it may prove to be preferred in future detectors using newly proposed plastic thin-film transistor (TFT) substrates.Using the diffusion approximation to the Boltzmann equation to model the spread of light in a scintillator, this paper develops an analytical model of MTF, NPS, and DQE for a phosphor irradiated obliquely. The model is set apart from other studies on oblique incidence in being derived from first principles. This work has applications in the optimization of DBT detector design." @default.
- W2022754861 created "2016-06-24" @default.
- W2022754861 creator A5048224254 @default.
- W2022754861 creator A5077763208 @default.
- W2022754861 date "2011-10-26" @default.
- W2022754861 modified "2023-10-05" @default.
- W2022754861 title "Optimization of phosphor-based detector design for oblique x-ray incidence in digital breast tomosynthesis" @default.
- W2022754861 cites W1532023978 @default.
- W2022754861 cites W1549269547 @default.
- W2022754861 cites W1988646776 @default.
- W2022754861 cites W1991311646 @default.
- W2022754861 cites W1999182710 @default.
- W2022754861 cites W2000024623 @default.
- W2022754861 cites W2007290339 @default.
- W2022754861 cites W2010158786 @default.
- W2022754861 cites W2010980584 @default.
- W2022754861 cites W2011383673 @default.
- W2022754861 cites W2012433651 @default.
- W2022754861 cites W2013061888 @default.
- W2022754861 cites W2018817901 @default.
- W2022754861 cites W2032138177 @default.
- W2022754861 cites W2039168960 @default.
- W2022754861 cites W2040191425 @default.
- W2022754861 cites W2046218852 @default.
- W2022754861 cites W2051022268 @default.
- W2022754861 cites W2051622276 @default.
- W2022754861 cites W2056637494 @default.
- W2022754861 cites W205918549 @default.
- W2022754861 cites W2059214102 @default.
- W2022754861 cites W2061746260 @default.
- W2022754861 cites W2064035035 @default.
- W2022754861 cites W2064043278 @default.
- W2022754861 cites W2073528852 @default.
- W2022754861 cites W2079773705 @default.
- W2022754861 cites W2082337278 @default.
- W2022754861 cites W2083031241 @default.
- W2022754861 cites W2083974757 @default.
- W2022754861 cites W2086564414 @default.
- W2022754861 cites W2093149632 @default.
- W2022754861 cites W2116887322 @default.
- W2022754861 cites W2124430732 @default.
- W2022754861 cites W2135122579 @default.
- W2022754861 cites W2147213318 @default.
- W2022754861 cites W2166177921 @default.
- W2022754861 cites W2171158150 @default.
- W2022754861 cites W2319962899 @default.
- W2022754861 cites W4240385807 @default.
- W2022754861 doi "https://doi.org/10.1118/1.3639999" @default.
- W2022754861 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3221709" @default.
- W2022754861 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22047384" @default.
- W2022754861 hasPublicationYear "2011" @default.
- W2022754861 type Work @default.
- W2022754861 sameAs 2022754861 @default.
- W2022754861 citedByCount "17" @default.
- W2022754861 countsByYear W20227548612012 @default.
- W2022754861 countsByYear W20227548612013 @default.
- W2022754861 countsByYear W20227548612014 @default.
- W2022754861 countsByYear W20227548612015 @default.
- W2022754861 countsByYear W20227548612016 @default.
- W2022754861 countsByYear W20227548612018 @default.
- W2022754861 countsByYear W20227548612019 @default.
- W2022754861 countsByYear W20227548612020 @default.
- W2022754861 countsByYear W20227548612021 @default.
- W2022754861 crossrefType "journal-article" @default.
- W2022754861 hasAuthorship W2022754861A5048224254 @default.
- W2022754861 hasAuthorship W2022754861A5077763208 @default.
- W2022754861 hasBestOaLocation W20227548612 @default.
- W2022754861 hasConcept C105795698 @default.
- W2022754861 hasConcept C115961682 @default.
- W2022754861 hasConcept C120665830 @default.
- W2022754861 hasConcept C121332964 @default.
- W2022754861 hasConcept C121608353 @default.
- W2022754861 hasConcept C126322002 @default.
- W2022754861 hasConcept C134093067 @default.
- W2022754861 hasConcept C146108262 @default.
- W2022754861 hasConcept C147454874 @default.
- W2022754861 hasConcept C154945302 @default.
- W2022754861 hasConcept C175231954 @default.
- W2022754861 hasConcept C19499675 @default.
- W2022754861 hasConcept C2780472235 @default.
- W2022754861 hasConcept C33923547 @default.
- W2022754861 hasConcept C41008148 @default.
- W2022754861 hasConcept C530470458 @default.
- W2022754861 hasConcept C55020928 @default.
- W2022754861 hasConcept C71924100 @default.
- W2022754861 hasConcept C86169459 @default.
- W2022754861 hasConcept C94915269 @default.
- W2022754861 hasConceptScore W2022754861C105795698 @default.
- W2022754861 hasConceptScore W2022754861C115961682 @default.
- W2022754861 hasConceptScore W2022754861C120665830 @default.
- W2022754861 hasConceptScore W2022754861C121332964 @default.
- W2022754861 hasConceptScore W2022754861C121608353 @default.
- W2022754861 hasConceptScore W2022754861C126322002 @default.
- W2022754861 hasConceptScore W2022754861C134093067 @default.
- W2022754861 hasConceptScore W2022754861C146108262 @default.
- W2022754861 hasConceptScore W2022754861C147454874 @default.
- W2022754861 hasConceptScore W2022754861C154945302 @default.
- W2022754861 hasConceptScore W2022754861C175231954 @default.