Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022755025> ?p ?o ?g. }
- W2022755025 endingPage "409" @default.
- W2022755025 startingPage "397" @default.
- W2022755025 abstract "The wood colonising white-rot basidiomycete Ceriporiopsis subvermispora is able to degrade lignin in preference to cellulose. To differentiate between fungal strains and to estimate their delignification behaviour, both in an early stage of degradation and over a specific period, is important for the wood industry. Mid infrared (MIR) and near infrared (NIR) spectra were taken from 60 milled spruce wood samples and their total lignin content was determined by wet laboratory methods. Good correlations were found between the MIR band–height ratio (H1510 cm −1 / H897 cm −1 ) and the lignin content ( r = 0.965) and between the NIR band height at 5978 cm −1 (1673 nm) taken from spectra in the second derivative mode and the lignin content ( r = 0.956). Furthermore, good linear correlations between the band–height ratios calculated from the MIR spectra and the amplitudes of the band around 5978 cm −1 (1673 nm) of NIR spectra in the second derivative mode were found for the calibration samples ( r = 0.934) and for the fungal-treated samples ( r = 0.984). The good correlation found between the MIR band–height ratio and the band height from NIR spectra in the second derivative mode could be interesting if calibrations exist for MIR (or NIR) to predict samples measured in the NIR (or MIR). MIR and NIR spectra recorded from milled spruce wood shavings that had been subjected to fungal treatment with three strains of Ceriporiopsis subvermispora (CBS 347.63, FPL 90.031 and FPL 105.752), for a period of up to 14 days, were investigated to see if these spectroscopic techniques could replace chemical methods. It is shown that the relative degree of delignification can be obtained directly from NIR spectra in the second derivative mode measuring the amplitude of a distinct band and from MIR spectra normalised with respect to the band at 897 cm −1 . Subjecting the spectra to principal component analysis (PCA) made it possible to study the time course along a PC axis. The use of an appropriate NIR wavenumber range subjected to PCA led to a scores plot that made it possible to differentiate between the three strains of C. subvermispora along one axis. It was also possible to give a time course and an indication of the relative degree of delignification along the second axis. In both cases, 99% of the data variance was explained with the first two PCs. A similar time course was obtained from MIR spectra, but the strains could not be separated well. Besides strain differentiation and examination of delignification, some practical applications (for example, in the pulp and paper industries, fungi-screening, evaluation of wood preservatives) are discussed. The results clearly demonstrate that it is possible to compare and differentiate between the strains without applying time-consuming chemical methods. The examination of NIR spectra is sufficient." @default.
- W2022755025 created "2016-06-24" @default.
- W2022755025 creator A5002008336 @default.
- W2022755025 creator A5036775267 @default.
- W2022755025 creator A5044560176 @default.
- W2022755025 creator A5067618800 @default.
- W2022755025 creator A5083299485 @default.
- W2022755025 date "2004-12-01" @default.
- W2022755025 modified "2023-09-25" @default.
- W2022755025 title "Examination of Spruce Wood Biodegraded by <i>Ceriporiopsis Subvermispora</i> Using near and Mid Infrared Spectroscopy" @default.
- W2022755025 cites W1608713687 @default.
- W2022755025 cites W1808803353 @default.
- W2022755025 cites W1966005338 @default.
- W2022755025 cites W1967803570 @default.
- W2022755025 cites W1969436790 @default.
- W2022755025 cites W1970247974 @default.
- W2022755025 cites W1977660832 @default.
- W2022755025 cites W1978835884 @default.
- W2022755025 cites W1982750684 @default.
- W2022755025 cites W1984138508 @default.
- W2022755025 cites W1984229846 @default.
- W2022755025 cites W1989341100 @default.
- W2022755025 cites W1992152869 @default.
- W2022755025 cites W1992317758 @default.
- W2022755025 cites W1996685536 @default.
- W2022755025 cites W2003403116 @default.
- W2022755025 cites W2008592976 @default.
- W2022755025 cites W2011718881 @default.
- W2022755025 cites W2013274755 @default.
- W2022755025 cites W202350960 @default.
- W2022755025 cites W2024165052 @default.
- W2022755025 cites W2025356192 @default.
- W2022755025 cites W2025486933 @default.
- W2022755025 cites W2028000549 @default.
- W2022755025 cites W2028313775 @default.
- W2022755025 cites W2030045698 @default.
- W2022755025 cites W2030334290 @default.
- W2022755025 cites W2035190471 @default.
- W2022755025 cites W2046880218 @default.
- W2022755025 cites W2053950056 @default.
- W2022755025 cites W2058567179 @default.
- W2022755025 cites W2058721551 @default.
- W2022755025 cites W2060206118 @default.
- W2022755025 cites W2061738909 @default.
- W2022755025 cites W2062063507 @default.
- W2022755025 cites W2062950350 @default.
- W2022755025 cites W2064815091 @default.
- W2022755025 cites W2068733751 @default.
- W2022755025 cites W2070863393 @default.
- W2022755025 cites W2073967065 @default.
- W2022755025 cites W2075888221 @default.
- W2022755025 cites W2077341198 @default.
- W2022755025 cites W2079386183 @default.
- W2022755025 cites W2088370216 @default.
- W2022755025 cites W2094204669 @default.
- W2022755025 cites W2094579672 @default.
- W2022755025 cites W2096507985 @default.
- W2022755025 cites W2106845272 @default.
- W2022755025 cites W2108388708 @default.
- W2022755025 cites W2109606373 @default.
- W2022755025 cites W2118514297 @default.
- W2022755025 cites W2126937242 @default.
- W2022755025 cites W2153522501 @default.
- W2022755025 cites W2167346889 @default.
- W2022755025 cites W2499967460 @default.
- W2022755025 cites W335690363 @default.
- W2022755025 doi "https://doi.org/10.1255/jnirs.449" @default.
- W2022755025 hasPublicationYear "2004" @default.
- W2022755025 type Work @default.
- W2022755025 sameAs 2022755025 @default.
- W2022755025 citedByCount "71" @default.
- W2022755025 countsByYear W20227550252012 @default.
- W2022755025 countsByYear W20227550252013 @default.
- W2022755025 countsByYear W20227550252014 @default.
- W2022755025 countsByYear W20227550252015 @default.
- W2022755025 countsByYear W20227550252016 @default.
- W2022755025 countsByYear W20227550252017 @default.
- W2022755025 countsByYear W20227550252018 @default.
- W2022755025 countsByYear W20227550252019 @default.
- W2022755025 countsByYear W20227550252020 @default.
- W2022755025 countsByYear W20227550252022 @default.
- W2022755025 crossrefType "journal-article" @default.
- W2022755025 hasAuthorship W2022755025A5002008336 @default.
- W2022755025 hasAuthorship W2022755025A5036775267 @default.
- W2022755025 hasAuthorship W2022755025A5044560176 @default.
- W2022755025 hasAuthorship W2022755025A5067618800 @default.
- W2022755025 hasAuthorship W2022755025A5083299485 @default.
- W2022755025 hasConcept C113196181 @default.
- W2022755025 hasConcept C120665830 @default.
- W2022755025 hasConcept C121332964 @default.
- W2022755025 hasConcept C153642686 @default.
- W2022755025 hasConcept C158355884 @default.
- W2022755025 hasConcept C178790620 @default.
- W2022755025 hasConcept C185592680 @default.
- W2022755025 hasConcept C192562407 @default.
- W2022755025 hasConcept C2779251873 @default.
- W2022755025 hasConcept C2781052789 @default.
- W2022755025 hasConcept C32891209 @default.