Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022756714> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2022756714 endingPage "4565" @default.
- W2022756714 startingPage "4558" @default.
- W2022756714 abstract "With the development of information technology (IT), how to find useful information existed in vast data has become an important issue. The most broadly discussed technique is data mining, which has been successfully applied to many fields as analytic tool. Data mining extracts implicit, previously unknown, and potentially useful information from data. Clustering is one of the most important and useful technologies in data mining methods. Clustering is to group objects together, which is based on the difference of similarity on each object, and making highly homogeneity in the same cluster, or highly heterogeneity between each group. In this paper, we propose a market segmentation system based on the structure of decision support system which integrates conventional statistic analysis method and intelligent clustering methods such as artificial neural network, and particle swarm optimization methods. The proposed system is expected to provide precise market segmentation for marketing strategy decision making and extended application." @default.
- W2022756714 created "2016-06-24" @default.
- W2022756714 creator A5013224422 @default.
- W2022756714 creator A5017306376 @default.
- W2022756714 creator A5037331185 @default.
- W2022756714 creator A5077984244 @default.
- W2022756714 date "2009-04-01" @default.
- W2022756714 modified "2023-10-13" @default.
- W2022756714 title "An intelligent market segmentation system using k-means and particle swarm optimization" @default.
- W2022756714 cites W136497305 @default.
- W2022756714 cites W1585002319 @default.
- W2022756714 cites W1983017713 @default.
- W2022756714 cites W1992419399 @default.
- W2022756714 cites W2071177730 @default.
- W2022756714 cites W2071965987 @default.
- W2022756714 cites W2110802877 @default.
- W2022756714 cites W2152195021 @default.
- W2022756714 cites W4237167522 @default.
- W2022756714 doi "https://doi.org/10.1016/j.eswa.2008.05.029" @default.
- W2022756714 hasPublicationYear "2009" @default.
- W2022756714 type Work @default.
- W2022756714 sameAs 2022756714 @default.
- W2022756714 citedByCount "96" @default.
- W2022756714 countsByYear W20227567142012 @default.
- W2022756714 countsByYear W20227567142013 @default.
- W2022756714 countsByYear W20227567142014 @default.
- W2022756714 countsByYear W20227567142015 @default.
- W2022756714 countsByYear W20227567142016 @default.
- W2022756714 countsByYear W20227567142017 @default.
- W2022756714 countsByYear W20227567142018 @default.
- W2022756714 countsByYear W20227567142019 @default.
- W2022756714 countsByYear W20227567142020 @default.
- W2022756714 countsByYear W20227567142021 @default.
- W2022756714 countsByYear W20227567142022 @default.
- W2022756714 countsByYear W20227567142023 @default.
- W2022756714 crossrefType "journal-article" @default.
- W2022756714 hasAuthorship W2022756714A5013224422 @default.
- W2022756714 hasAuthorship W2022756714A5017306376 @default.
- W2022756714 hasAuthorship W2022756714A5037331185 @default.
- W2022756714 hasAuthorship W2022756714A5077984244 @default.
- W2022756714 hasConcept C103278499 @default.
- W2022756714 hasConcept C105795698 @default.
- W2022756714 hasConcept C115961682 @default.
- W2022756714 hasConcept C119857082 @default.
- W2022756714 hasConcept C124101348 @default.
- W2022756714 hasConcept C125308379 @default.
- W2022756714 hasConcept C144133560 @default.
- W2022756714 hasConcept C153180895 @default.
- W2022756714 hasConcept C154945302 @default.
- W2022756714 hasConcept C162853370 @default.
- W2022756714 hasConcept C33923547 @default.
- W2022756714 hasConcept C41008148 @default.
- W2022756714 hasConcept C50644808 @default.
- W2022756714 hasConcept C73555534 @default.
- W2022756714 hasConcept C85617194 @default.
- W2022756714 hasConcept C89128539 @default.
- W2022756714 hasConcept C89600930 @default.
- W2022756714 hasConceptScore W2022756714C103278499 @default.
- W2022756714 hasConceptScore W2022756714C105795698 @default.
- W2022756714 hasConceptScore W2022756714C115961682 @default.
- W2022756714 hasConceptScore W2022756714C119857082 @default.
- W2022756714 hasConceptScore W2022756714C124101348 @default.
- W2022756714 hasConceptScore W2022756714C125308379 @default.
- W2022756714 hasConceptScore W2022756714C144133560 @default.
- W2022756714 hasConceptScore W2022756714C153180895 @default.
- W2022756714 hasConceptScore W2022756714C154945302 @default.
- W2022756714 hasConceptScore W2022756714C162853370 @default.
- W2022756714 hasConceptScore W2022756714C33923547 @default.
- W2022756714 hasConceptScore W2022756714C41008148 @default.
- W2022756714 hasConceptScore W2022756714C50644808 @default.
- W2022756714 hasConceptScore W2022756714C73555534 @default.
- W2022756714 hasConceptScore W2022756714C85617194 @default.
- W2022756714 hasConceptScore W2022756714C89128539 @default.
- W2022756714 hasConceptScore W2022756714C89600930 @default.
- W2022756714 hasIssue "3" @default.
- W2022756714 hasLocation W20227567141 @default.
- W2022756714 hasOpenAccess W2022756714 @default.
- W2022756714 hasPrimaryLocation W20227567141 @default.
- W2022756714 hasRelatedWork W1501331687 @default.
- W2022756714 hasRelatedWork W2045342254 @default.
- W2022756714 hasRelatedWork W2142182663 @default.
- W2022756714 hasRelatedWork W2326647871 @default.
- W2022756714 hasRelatedWork W2468652214 @default.
- W2022756714 hasRelatedWork W2501551404 @default.
- W2022756714 hasRelatedWork W2535231171 @default.
- W2022756714 hasRelatedWork W2592395359 @default.
- W2022756714 hasRelatedWork W4205247302 @default.
- W2022756714 hasRelatedWork W4255512592 @default.
- W2022756714 hasVolume "36" @default.
- W2022756714 isParatext "false" @default.
- W2022756714 isRetracted "false" @default.
- W2022756714 magId "2022756714" @default.
- W2022756714 workType "article" @default.