Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022758097> ?p ?o ?g. }
- W2022758097 endingPage "611" @default.
- W2022758097 startingPage "602" @default.
- W2022758097 abstract "Computational and theoretical chemistry provide fundamental insights into the structures, properties, and reactivities of molecules. As a result, theoretical calculations have become indispensable in various fields of chemical research and development. In this Account, we present our research in the area of computational transition metal chemistry, using examples to illustrate how theory impacts our understanding of experimental results and how close collaboration between theoreticians and experimental chemists can be mutually beneficial. We begin by examining the use of computational chemistry to elucidate the details of some unusual chemical bonds. We consider the three-center, two-electron bonding in titanocene sigma-borane complexes and the five-center, four-electron bonding in a rhodium-bismuth complex. The bonding in metallabenzene complexes is also examined. In each case, theoretical calculations provide particular insight into the electronic structure of the chemical bonds. We then give an example of how theoretical calculations aided the structural determination of a kappa(2)-N,N chelate ruthenium complex formed upon heating an intermediate benzonitrile-coordinated complex. An initial X-ray diffraction structure proposed on the basis of a reasonable mechanism appeared to fit well, with an apparently acceptable R value of 0.0478. But when DFT calculations were applied, the optimized geometry differed significantly from the experimental data. By combining experimental and theoretical outlooks, we posited a new structure. Remarkably, a re-refining of the X-ray diffraction data based on the new structure resulted in a slightly lower R value of 0.0453. We further examine the use of computational chemistry in providing new insight into C-H bond activation mechanisms and in understanding the reactivity properties of nucleophilic boryl ligands, addressing experimental difficulties with calculations and vice versa. Finally, we consider the impact of theoretical insights in three very specific experimental studies of chemical reactions, illustrating how theoretical results prompt further experimental studies: (i) diboration of aldehydes catalyzed by copper(I) boryl complexes, (ii) ruthenium-catalyzed C-H amination of arylazides, and (iii) zinc reduction of a vinylcarbyne complex. The concepts and examples presented here are intended for nonspecialists, particularly experimentalists. Together, they illustrate some of the achievements that are possible with a fruitful union of experiment and theory." @default.
- W2022758097 created "2016-06-24" @default.
- W2022758097 creator A5054639075 @default.
- W2022758097 date "2010-02-04" @default.
- W2022758097 modified "2023-10-03" @default.
- W2022758097 title "Interplay between Theory and Experiment: Computational Organometallic and Transition Metal Chemistry" @default.
- W2022758097 cites W1617581539 @default.
- W2022758097 cites W1964058519 @default.
- W2022758097 cites W1965272987 @default.
- W2022758097 cites W1967558027 @default.
- W2022758097 cites W1968661194 @default.
- W2022758097 cites W1973435027 @default.
- W2022758097 cites W1974964269 @default.
- W2022758097 cites W1978251002 @default.
- W2022758097 cites W1979827924 @default.
- W2022758097 cites W1983269127 @default.
- W2022758097 cites W1985756525 @default.
- W2022758097 cites W1991222957 @default.
- W2022758097 cites W1992916154 @default.
- W2022758097 cites W1998085580 @default.
- W2022758097 cites W1999803926 @default.
- W2022758097 cites W2005661768 @default.
- W2022758097 cites W2006227072 @default.
- W2022758097 cites W2010893700 @default.
- W2022758097 cites W2014458124 @default.
- W2022758097 cites W2017759723 @default.
- W2022758097 cites W2018545745 @default.
- W2022758097 cites W2019512570 @default.
- W2022758097 cites W2021481762 @default.
- W2022758097 cites W2023239962 @default.
- W2022758097 cites W2027754082 @default.
- W2022758097 cites W2028591348 @default.
- W2022758097 cites W2030974211 @default.
- W2022758097 cites W2032096476 @default.
- W2022758097 cites W2034782556 @default.
- W2022758097 cites W2044222624 @default.
- W2022758097 cites W2046916084 @default.
- W2022758097 cites W2048182014 @default.
- W2022758097 cites W2051372059 @default.
- W2022758097 cites W2060705860 @default.
- W2022758097 cites W2068447673 @default.
- W2022758097 cites W2071187844 @default.
- W2022758097 cites W2076770292 @default.
- W2022758097 cites W2078857345 @default.
- W2022758097 cites W2079071600 @default.
- W2022758097 cites W2084201151 @default.
- W2022758097 cites W2085640964 @default.
- W2022758097 cites W2086169815 @default.
- W2022758097 cites W2090169275 @default.
- W2022758097 cites W2099634855 @default.
- W2022758097 cites W2101525448 @default.
- W2022758097 cites W2105000835 @default.
- W2022758097 cites W2109005035 @default.
- W2022758097 cites W2133300466 @default.
- W2022758097 cites W2149515824 @default.
- W2022758097 cites W2493803916 @default.
- W2022758097 cites W2949422210 @default.
- W2022758097 cites W302790933 @default.
- W2022758097 cites W4210285229 @default.
- W2022758097 cites W4248612896 @default.
- W2022758097 cites W583718178 @default.
- W2022758097 cites W647854637 @default.
- W2022758097 doi "https://doi.org/10.1021/ar9002027" @default.
- W2022758097 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20131895" @default.
- W2022758097 hasPublicationYear "2010" @default.
- W2022758097 type Work @default.
- W2022758097 sameAs 2022758097 @default.
- W2022758097 citedByCount "78" @default.
- W2022758097 countsByYear W20227580972012 @default.
- W2022758097 countsByYear W20227580972013 @default.
- W2022758097 countsByYear W20227580972014 @default.
- W2022758097 countsByYear W20227580972015 @default.
- W2022758097 countsByYear W20227580972016 @default.
- W2022758097 countsByYear W20227580972017 @default.
- W2022758097 countsByYear W20227580972018 @default.
- W2022758097 countsByYear W20227580972019 @default.
- W2022758097 countsByYear W20227580972020 @default.
- W2022758097 countsByYear W20227580972021 @default.
- W2022758097 countsByYear W20227580972022 @default.
- W2022758097 countsByYear W20227580972023 @default.
- W2022758097 crossrefType "journal-article" @default.
- W2022758097 hasAuthorship W2022758097A5054639075 @default.
- W2022758097 hasConcept C106773901 @default.
- W2022758097 hasConcept C147597530 @default.
- W2022758097 hasConcept C159467904 @default.
- W2022758097 hasConcept C161790260 @default.
- W2022758097 hasConcept C178213299 @default.
- W2022758097 hasConcept C178790620 @default.
- W2022758097 hasConcept C185592680 @default.
- W2022758097 hasConcept C2778826510 @default.
- W2022758097 hasConcept C32909587 @default.
- W2022758097 hasConcept C86025842 @default.
- W2022758097 hasConceptScore W2022758097C106773901 @default.
- W2022758097 hasConceptScore W2022758097C147597530 @default.
- W2022758097 hasConceptScore W2022758097C159467904 @default.
- W2022758097 hasConceptScore W2022758097C161790260 @default.
- W2022758097 hasConceptScore W2022758097C178213299 @default.
- W2022758097 hasConceptScore W2022758097C178790620 @default.